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PREFACE

THE PRESENT MONOGRAPH has three parts. Part I deals with the general theory of
radiative heat transfer in the atmosphere, without regard to the particular structure
of the far infrared spectrum. Part IT analyzes this spectrum and shows the connec-
tion between its structural elements, which are the primary data of spectroscopy,
and the integral effects observed as radiative flow of heat. Part IIT deals with the
direct measurement of radiative heat flow in the atmosphere, or-in the laboratory
under conditions simulating those of the atmosphere, and with empirical relation-
ships derived from such measurements. An attempt has been made to keep the three
parts as nearly independent of each other as feasible, although this could not be
doie rigorously; but it is hoped that each part is understandable with a not-too-
thoroi\ig"h perusal of the others. The subject presented is at the borderline between
dynamic meteorology and infrared spectroscopy and we hope to show that out of
the interplay of these two branches of science new problems may arise whose solu-
tion is of interest to both of them.

The author wishes to use this opportunity to express his appreciation of the co-
operation which he has had during the years at the California Institute of Tech-
nology while working on the subject of these pages. His thanks go to Professor John
Strong, whose advice and coperation have been most valuable, to Dr. J. Anderson
for the use of the facilities of the Astrophysics Department for the infrared measure-
ments, and to Mr. Charles E, Miller, who has been of great assistance in the design
and construction of the calculating machine and in several other stages of the work.
Professor H. G. Houghton of the Massachusetts Institute of Technology has
kindly read the proofs of this paper and has contributed a number of valuable
suggestions.

The author’s investigations would not have been possible without the support
of the United States Government with funds appropriated under the Bankhead-
Jones act. In the publication of this monograph and in the editing of the atmos-
pheric radiation chart in particular, he has been greatly assisted by a grant from
the United States Weather Bureau.
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HEAT TRANSFER BY INFRARED RADIATION
| IN THE ATMOSPHERE

PART I. PRINCIPLES OF RADIATIVE TRANSFER

1. Kirchhoﬁ’s Law; The Equation of Transfer; Planck’s Law

Some Definitions: For any wave the wave length A and the frequency »’ are con-

pected by the formula:
M =c (1.1)

where ¢ is the velocity of propagation of the wave. In the atmosphere this velocity
is practically équal to the velocity of light in a vacuum, ¢ = 8-10% cm/sec. 'We shall
usually characterize the radiation by its frequency or, what amounts to the same
thing, tﬁe reciprocal wave length:

/, v=1/A=7"/c (1.2)

This/éuantity is called the wave number, its dimension being cm~'. Since wave
number and frequency differ only by a constant factor, we will often use these two -
terms interchangeably; this is not likely to lead to confusion.

Tt seems reasonable to start out with a brief sketch of Kirchhoff’s law. Kirch-
hoff investigates the thermodynamic equilibrium between matter and radiation. To
illustrate this concept, let us consider an enclosure surrounded on all sides by thick
walls. The walls may be absorbing for a certain frequency and so thick that a beam
of fadiation of this frequency falling upon a wall does not penetrate to the other
side. Such a wall will be called perfectly opaque for this frequency. A wall which is
perfectly opaque for all frequencies is called black. The walls will emit a certain
amount of temperature radiation into the enclosure. If all the walls have the same
temperature, and if the temperature remains constant, an equilibrium will be
reached in which there must be, inside the enclosure, a certain amount of radiation
flowing in all directions. This state is called the thermodynamic equilibrium be-
tween radiation and matter at this temperature. We can show that the emission
of a perfectly opaque wall does not depend on the chemical constitution of the wall.
Indeed, assume that two opposite sides of our enclosure are made of different ma-
terials but have the same temperature. The radiation going from the first to the
second wall must be exactly equal to the radiation going in the opposite direction,
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since otherwise there would be a net flow of heat from one body to another body
of the same temperature, which is in contradiction to the second law of thermo-
dynamics. Therefore, the emission of the first wall must equal the emission of the
second wall. Since this must be true for any pair of substances, the emission of all
walls in thermodynamic equilibrium must be the same. Now the emission of a wall
does not depend upon the existence of equilibrium radiation in an adjacent en-
closure; indeed, it does not depend at all upon the conditions outside the wall.
Therefore, the emission of a perfectly opague wall is generally independent of the
optical properties of the wall. The intensity of this emission is called the black body
intensity at the respective wave length and temperature. To avoid misunder-
standing it must be remembered that a black body is defined as a body which is
perfectly opaque at all wave lengths. A wall, however, may be perfectly opaque for
radiation of one wave length, while it is partly or completely transparent for radia-
tions of other wave lengths. The wall will then emit the black body intensity at
those particular wave lengths for which it is completely opaque; for these wave
lengths a thermodynamic equilibrium between the radiation and matter will be
established inside the enclosure. :
We consider now a slab of material of finite thickness which absorbs a part and
transmits another part of the radiation at a given wave length. Let us suppose first
that this slab is inside our enclosure, and let us consider a beam of radiation cross-
ing the slab under any angle. We call I the intensity of this beam which, in thermo-
dynamic equilibrium, is just the black body intensity.! Let 4 be the fractional ab-
sorption of the slab; i.e., let the amount of intensity of the beam absorbed inside
the slab be AI,. The amount transmitted through the slab is (1 — A) L. Furthér, '
let E designate the intensity of radiation emitted by the slab in the direction of the
beam. Now in thermodynamic equilibrium the total intensity of the beam after
passing through the slab must be the same as the intensity of the beam before it
strikes the slab. Indeed, if this were not the case, the slab would gain or lose energy
at the expense of the wall towards which the beam is directed, and we would have
a steady flow of energy between two bodies of the same temperature, which is
again in contradiction to the second law of thermodynamics. We have, therefore,
in thermodynamic equilibrium: T

L=0-AL+E
which gives
E/A=I | (1.3)

i The intensity of a beam of radiation is generally defined as the amount of energy which per unit
time flows through a cross section of unit area perpendicular to the direction of the beam.
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and this is Kirchhoff’s law: The ratio of emission and fractional absorption in any
direction of a slab of any thickness in thermodynamic equilibrium equals the black
body intensity, This result remains unchanged if reflection at the slab’s boundaries
is taken into account.” The primary beam loses part of its intensity by reflection on
entering the slab; purely geometrical considerations show then that the intensity of
the beam is augmented by exactly the same amount when leaving the slab; the
additional intensity is produced by reflection out of the beam which travels in the
opposite direction. For infrared thermal radiation, with which we are dealing here,
reflection is mostly negligible.

As we saw, I is a universal function of frequency and temperature and is in-
dependent of the material. Since the function is universal, Kirchhoff’s law (1.3)
represents a universal relationship between the emission and the fractional absorption
of a radiating body at any given wave length, which may be stated without reference
to the concept of a thermodynamic equilibrium. We may apply (1.8) to the case of
an infinitely thin sheet of absorbing material. Let dm be the mass per cm? of the
sheet and k the absorption coefficient of the substance. Then 4 = k dm, and this
will be the definition of the absorption coefficient k. According to (1.3) the emission
of the sheet perpendicular to its boundary is:

dE = kL,dm

We next consider radiation which is not in thermodynamic equilibrium with
matter. Take again an infinitesimal sheet of absorbing matter and a beam of radia-
tion perpendicular to it. The change in intensity which takes place if the beam
passes through the sheet is equal to the amount emitted minus the amount absorbed
by the sheet. If I isthe intensity of the beam, then the amount absorbed is kI dm,
while the amount emitted is given by (1.8). We have, therefore:

dl = — k(I — I)dm (1.4)

This is the fundamental equation of radiative transfer, often called Schwarzschild’s
equation. The first part of this paper is mainly devoted to the integration of this
equation under the particular conditions which prevail in the earth’s atmosphere.
In the atmosphere there are beams of radiation traveling in all directions. Let ds
be a line element in a given direction; we can then divide the atmosphere into in-
finitesimal sheets which are perpendicular to this direction. The mass per unit sur-
face of a sheet may be written dm = pds where p is the density of the absorbing

material. Then

o ~kp (I~ I (1.5)
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and this must be true for any point of the atmosphere and for any direction ds. In
this form we will use the equation of transfer further on.

% * *

The mathematical expression of the black body intensity as a function of the
wave number is derived in atomic physics. This function is known as Planck’s law.
Originally introduced by Planck as a semi-empirical formula which fitted the ob-
servations, this law can also be deduced from the principles of quantum theory.
Thus it is well founded, both empirically and theoretically. Planck’s law reads:

3
I = % (1.6)
where p and ¢ are universal constants. We must notice that a finite flux of energy
is obtained only if one integrates over an interval of the spectrum. Therefore
I,dv has the dimension of an energy per unit time per unit surface. The constants
in (1.6) have the numerical values®

erg-cm? cal - cm?
sec

= (8.732 = 0.006)-10-% — 0.63-10-°
p=( )-10 9.63-100 5

q = (1.486 = 0.001) cm-degree

and the absolute temperature T’ is connected with the temperature ¢ in the centi-
grade scale by : '

T =14 273.16

The total radiation of a black body is obtained by integrating (1.6) over all wave-
numbers. We have with z = qv/T

m i Pz
=P
/}de—rq4 e —1

.0

The evaluation of this integral is somewhat intricate,? and only the result may be
indicated. The integral has the value 74/15 and we obtain, using a current no-

tation:
0
Ldv=21T¢
‘[bdl’ - r a.m
0
where ¢ 1is a constant: ,
’ : . erg cal
= =5%0-10"% ——2% . =1, -10-8
v 1r4p/15q4 5.70-10 sec-cm? deg.t 1.470-10 8 hours- cm?. deg.*

1 ., T. Wensel, Bur. of Stand. Journ. of Res. 22:375. 1939.

2 Tf we develop (¢ — 1)1 = ¢ = 4 ¢ 4 ¢ 4 . . ., we can integrate term by term and we obtain
for our integral the series 6 (1 4 2~ 4- 87 4- 4% 4 . . .}, the summation’of which is carried out in the
theory of Riemann’s zeta function (see Whittaker-Watson, Modern Analysis, ch. 13).
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In practice we are usually not so much interested in the radiation of a straight
beam as in the total emission of a black surface into the hemisphere. We designate
the latter emission by f; and, as will be demonstrated in the next chapter, we have

the simple relation f, = 7 I;. We write F, = f fadv and have
-0

Fy=0cTt (1.8)
Formula (1.8) is known as Stefan’s law.
Numerical values of the black body function may be obtained from Table 1.

TasLel, INTEGRATIONOFRADIATIONINTENSITYBYWAVENUMBER,f Jfydv=RT%(x),
AND OF CHANGE OF INTENSITY WITH T EMPERATURE, f (df/dT) deRngb (z), WHERE
z=q/T, q= 1.436 cm - degree, R = 2 264 - 10_ cal / (8 hours - cm? - degree?),
¢ (z) = fx3 (€F— 1)dx and ¢'(z) = _/‘x“e”(e — 1)~2dz.

100¢(z) , 100 (z) , 100(z) ,
e I CH I - ORI ON IR c O RO
0.1 0.004 0.0003 0.000 8.5 49.937 3.2429 8.299 6.9 91.945 5.9709 21.597

0.2 0.038  0.0024 0.003 3.6 51.974 33752 8.783 7.0 92443 6.0032 21.821
0.3 0.123 0.0080 0.009 3.7 53.973 8.5050  9.269 7.1 92911 6.0336 22.036
0.4 0.281 0.0183 0.021 3.8 55928 8.6319 0.756 7.2 93.854 6.0624 22.242
0.5 0.529 0.0343 0.041 3.9 57.839 3.7561 10.245 7.8 93970 6.0804 22438
0.6 0.880 0.0571 0.071 40 59703 3.8771 10.782 74 94164 6.1150 22.626
0.7 1.342 0.0871 0.112 4.1 61.516 38.9948 11.218 7.5 94.584 6.1390 22.805

0.8 1.923 01249 0.166 4.2 63.279 4.1094 11.701 7.6 94.883 6.1617 22.976
0.9 2.629 01707 0.233 4.3 64.989 4.2204 12.179 T4 95.210 6.1830 23.140
1.0 3.462 0.2248 0.317 4.4 66.647 4.3281 12.653 7.8 95.521 6.2031 £3.295
1.1 4421 0.2871 0.418 4.5 68.250 4.4322 13.123 7.9 65810 6.2219 23.448
1.2 5.507 038576 0.586 4.6 69.799 4.5328 13.585 8.0 96.084 6.2897 23.584

1.3 6714 0.4360 0.674 447 71.293 4.6298 14.040 8.2 96.581 6.2720 23.845
1.4 8.040 0.5221 0.881 48 724934 47233 14.488 84 97.020 6.3005 24.082

1.5 9.478 0.6155 1.008 4.9 74121 4.8134 14.929 8.6 97.405 63254 24,204
1.6 11.022 07158 1.206 5.0 75452 4.8999 15.360 8.8 97.744 63475 24.485
1.7 12.667 0.8226 1.424 51 76.732 4.9830 15.782 9.0 98.039 6.3667 24.657
1.8 14.402 0.9358 1.662 5.2 '77.960 5.0627 16.195 9.2 98.299 6.3835° 24.810
1.9 16.221 1.0534 1.922 5.3 79.185 5.1390 16.598 9.4 98.526 6.3983 24.946
2.0 18115 1.1764 2.201 5.4 80259 5.2120 16.990 9.6 98.723 6.4111 25.069
21 20.074 1.3036 2.500 5.5 81.335 5.2819 17.373 9.8 08.806 6.4223 25.177

2.2 22.091 1.4346 2.820 5.6 82.362 5.3486 17.744 100 99.045 6.4320 25.274
23 24158 1.5688 38.157 5.7 83.343 54123 18.106 104 99.2900 0.4479 254385
24 26265 1.7056 3.512 58 84278 54730 18.456 10.8 99.472 64597 25.561
25 28402 1.8444 3.885 5.9 85.168 5.5308 18.795 11.2 99.609 6.4686 25.659
26 380.564 1.9849 4.278 6.0 86.015 5.5858 19.123 11.6 99712 6.475% 25.735
277 82743 21263 4.676 6.1 86.821 5.6382 19.440 12.0 99.787 6.4802 25.793
2.8 84.929 2.2683 5.004 6.2 87.588 5.6879 19.747 124 99.843 6.4838 25.838
29 87.118 24104 5.523 6.3 B88.315 657352 20.042 12.8 09.885 6.4866 25.872
8.0 389.801 2.5522% b5.965 6.4 89.0056 5.7800 20.328 13.2 99.916 6.4885 25.808
8.1 41472 2.6932 6.416 6.5 89.659 5.8224 20.602 13.6 99.939 6.4900 25.918
3.2 48.627 2.8332 6.877 6.6 90.279 5.8627 20.866" 140 99,955 6.4911 25.938
8.8 45759 29716 7.345 6.7 90.866 5.9008 21.120 15.0 99.980 6.4927 25.955
3.4 47.865 8.1083 7.820 6.8 91.422 5.9370 21.364 o 100.000 6.4940 25.976
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Since we commonly use the integrated intensity J fudv over a given interval of the
spectrum rather than the intensity f; itself, the integral between the limits 0 and =
has been calculated. The integral over the temperature derivative df,/dT which
will be used later is also given. The quantity R appearing at the head of Table 1 is
readily seen from (1.6) to have the value .

_ _ . erg . 10—9 cal
R p/q“ 8.78-10 sec.cm?- deg.* = 2.264-10 3 bours.cm?.deg*

2. Transfer of Monochromatic Radiation

We shall now treat the simplest problem of transfer, namely, the absorption of
radiation by a slab of finite thickness which does not radiate itself. From Kirch-
hoff’s law we know that the emission is not independent of the absorption, and we
cannot, in principle, equate the emission to zero. For low temperatures, however,
the emission becomes small. As a first approximation we may treat the case of Zero
emission; the equation of {ransfer (1.5) reduces then to:

dI

= kel | C(@1)

Here ds is a line element in an arbitrary direction in the absorbing medium whose
density is p. The absorption coefficient k is, in general, a function of the frequency.
In this chapter we consider the case that k is a constant, independent of frequency,
or else we confine ourselves to a frequency interval so small that & is appreciably
constant within it (monochromatic radiation). We assume throughout that the
absorbing material is bounded by two parallel planes of infinite extension. We speak
then of an absorbing slab. If the slab is infinitely thin, we shall call it an absorbing
sheet. The z-codrdinate is always taken perpendicular to the bounding planes (i.e.,
vertical in the atmosphere), the z- and y-cobrdinates are parallel to these planes.

Equation (2.1) can be put in a somewhat more convenient form. If, instead of
s in (2.1), we use the height 2, we have (Fig. 2): dz = ds cos 0. Furthermore, it is
convenient to introduce the new variable

u = J‘zp dz (2.2)
We have then du = p dz and thereforé ‘°
pds = dusec §
- where as usual sec § = 1/cos 6. The quantity » measures the total amount of ab-

sorbing material above the reference level 2. Equation (2.1) becomes now:

£= — Lklsec
du
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If the incident beam has the intensity Iy, we obtain by integration:
I = Iyehuscecsd (2.8)

The next simple case is that of isotropic radiation of intensity /o falling upon one
face of the slab. By isotropic radiation we designate a diffuse radiation which has
the same intensity in all directions. It is useful to introduce the fluz f which per
unit time crosses a unit surface perpendicular to the z-direction. This flux is ob-
tained by integrating I over a hemisphere. Now if a beam with intensity I per
unit cross section perpendicular to itself falls upon a surface under the angle 6,

ec O

a unit area on the surface will receive the intensity I cos 6. Therefore, we have

for the flux:
r /2"

f=6/'d¢6flcosﬂsin0d9 (2.4)

with the integration extending over the hemisphere. We consider first an isotropic '
flux I = I, independent of the angles. We obtain then

fo=mly (2.5)

For isotropic radiation the fluz is w times the intensity of a straight beam, a result of
great usefulness. A word might be said about the physical significance of this
relation. Strictly speaking, a parallel beam carries a vanishing amount of energy
while a beam of the small solid angle of divergence dw carries an amount I, do.
Hence, to be physically correct such formulae as (2.1) should be multiplied on both
sides by dw, but little confusion is created by omitting this factor. Since dw is a
pure number, f and I have the same dimension. We have made use of (2.5) at the
end of Section 1, applying it to black body radiation.

Formula (2.5) gives the flux incident on one side of our slab; the flux emerging

at the other side is by (2.4):
2x /2

f =ofd¢6flo ¢~k secf cog fsin 0 dO (2.6)
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The emerging radiation is, in general, no longer isotropic. To simplify the last
integral we put 7 = sec 6, and we obtain: '

f=2r IJ oy 21
1

We may here introduce the incident flux fo from (2.5), and we write the result in
the abbreviated form:

§ = of, Eia(kw) L@
The function introduced here is one of a set of functions which play a great role in
the transfer problems. We define

Ei,(z) = fe™ ;l—z (2.8)
i
The function defined in this way is called the n-th exponential integral. Changing
the integration variable to y = a7, we may also write:

(2]

Fi, (@) = xn-frﬂ %

z

Through an integration by parts we obtain from this the recursion formula:

. e x
Ez"(x)—n-—l-n-—l

Eina () (2.9)

By differentiating (2.8) we obtain further:

%@ = — Fips () @.10)
We might remark that a notation introduced by Gold (74) is sometimes found in
meteorological papers. Gold writes H, and H for Eiy and Et;, respectively. Some
mathematical writers use — Ei(—z) instead of Ei\(z). The notation employed here
is that of E. A. Milne in his work on thermodynamics of the stars (10) which con-
tains a most comprehensive treatise on radiative transfer. Numerical values of
Ei, and Ei; are given in Table 4, Section 7. ' \
We shall now proceed to a more general problem, taking into account emission.
If we substitute the variable u of (2.2) in the general transfer equation (1.5), the

Iatter reads:

al -
= Esec 8 (I — In) (2.11)

where I, is the black body intensity. The following special case is of importance and
will be used frequently later on: An infinitesimal emitting sheet is adjacent to one
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face of an absorbing slab (Fig. 8). The slab itself does not radiate but absorbs part
of the radiation emitted by the sheet. The (infinitesimal) intensity of emission in a
direction which makes an angle § with the z-axis is obviously proportional to the
thickness of the sheet in this direction; i.e., is proportional to sec 6. Indeed, from
(2.11) we have for the emission of the sheet:

dl = ksec0Idu

We obtain now the infinitesimal flux which emerges at the other side of the slab by

substituting dI instead of Iy in formula (2.6). This gives
er /2

df = kduf dg[ Lewrstsin0ds (2.12)
¢ 0
Proceeding as above after (2.6) and carrying out the integration over § we may
write this

' df = 2 k I Eiy (k) du (2.18)

A

L1\ du
u

N

Fia. 3.

From this expression we can readily obtain the formula for the radiation emitted
by a slab or an atmosphere of arbitrary structure. By this we mean a stratified
medium in which the temperature is a given arbitrary function of the thickness u.
We make the assumption, fundamental for all subsequent calculations, that the ab-
sorption coefficient k does not depend on the temperature. 'This is only approximately
true in the atmosphere; the corrections caused by deviations from this rule in the
actual atmosphere will be discussed in Section 8. In fact, the assumption of con-
stant & was already implied in the integral (2.8) of the differential equation of trans-
fer. Now the black body intensity I is a function of the temperature . In any
actual slab or atmosphere there is a definite relation between the temperature and
the density of the absorber. Hence 7 is a definite function of u, consequently I is
a-definite function of u, the functional relationship depending of course upon the
structure of the particular atmosphere. If 4o and %; designate the boundaries of the
slab or atmosphere, we obtain from (2.18) for the total flux arriving at u,

o
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Using (2.10) and introducing the black flux f, which is connected with I by (2.5),
this may also be written

f(ug) = — ffb Qd% (kdiu._ w) 4, (2.15)

This formula expresses the flux emerging from an arbitrary atmosphere.

3. Transfer of Non-Monochromatic Radiation

The actual radiation emitted by the atmosphere is a mixture of radiations of
various frequencies. The resultant total flux is obtained by integrating (2.15) over
all frequencies:

F (uo) = - ﬁ” fs 2d Bis (b d(: — %)) g (8.1)

It must here be considered that both the black flux f, and the absorption coefficient
I are functions of ». Now (3.1) is the general solution of our transfer problem and
our next step is a discussion of the integrals appearing in this formula.

The evaluation of these integrals is complicated by the fact that the actual ab-
sorption coefficients are not simple functions of the frequency. The spectra of
atmospheric gases in the infrared are line spectra; they consist of a large number
of relatively narrow strips of intense absorption (or emission, as the case may be).
Each such strip is called a spectral line. The water vapor spectrum alone contains
several hundred lines (see Fig. 16). This means that the absorption coefficient &
oscillates very rapidly in function of ». A direct evaluation of the integral (8.1)
would therefore be quite impossible in practice. In order to simplify the procedure
we perform it in' two steps, introducing as a first step an operation of smoothing over
the rapid oscillations of the absorption coefficient. For this purpose we divide the
whole interval of integration into a number of smaller intervals. We choose the
latter intervals so that the black body flux may be considered as approximately
constant within each interval, but on account of the large number of spectral lines
each interval will still contain several lines. In each interval we average over the
rapid fluctuations of the absorption coefficient k.

Let us first consider this averaging operation for the case of the absorption of a
straight beam,

I=1Ipe
Assuming that I, is constant in the small interval of the spectrum over which the
average extends we may write ‘

[1Jew = Lle7* Ja . (3.9
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Now the result of the averaging process may depend on the particular way in which
the absorption coefficient k fluctuates within the interval. One might therefore get
different types of functions in different intervals. This again would greatly com-
plicate the theory. Fortunately it is possible in practice to get along with only a
few types of such functions. The latter will be called transmission functions. If the
vabsorption coefficient is constant in the interval, the transmission function reduces
to e~ itself. In the more general case of a variable k we introduce the abbreviation
77 for the transmission function:

T = [8‘_7‘“ av (33)
The case of interest for us is that thereis a considerable number of spectral lines in
- the interval considered. This case is mathematically treated in Section 7, and analyt-
. ical expressions for the transmission functions are given. It is found that the
transmission due to a group of spectral lines can be represented by the function

n=1—¢ (\F—Q o (8.4)

where ¢ is the so called probability integral. The quantity I will be called the gen-
eralized absorption coefficient. The function (8.4) no longer contains the rapid
fAuctuations of the absorption coefficient caused by the presence of many spectral
lines. The quantity [ may be considered as constant in any of the intervals intro-
duced above; if the intervals are sufficiently numerous, we might look at the varia-
tion of  from interval to interval as a continuous variation with wave length; this
variation might in practice be taken to be of the same order as the variation of the
black body intensity with wave length. '

From (3.2) and (3.3) we see that
rr = [IJw/1o (8.5)

This formula may readily be generalized to the case of an absorbing slab. The
transition from the intensity I of a beam to a two-dimensional flux is given by (2.4)
or (2.6); we may write (2.4) in the form:

f= 7r5/‘ 1I (u seg 6)d (sinf 6) » (3.6)

Averaging over a spectral interval we can write in analogy to (8.5) for the transmis-
sion of the flux ,
‘ 1= [ flw/fo )
Tf now we average on both sides of (3.6) and use (3.5) and (2.5) on the right hand
side, we have .

T = flrr (u sec 6) d (sin? 0) ' (8.8)
0
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a formula which is convenient for numerical computations. It must be remembered
however that this derivation of (8.8) is based upon the assumption that the incident
intensity I, is independent of the direction 6, i.e., isotropic, while the intensity I of
the radiation leaving the slab might be a function of 6.

In the particular case where the absorption of a beam is exponential we have

by (2.7) .
T = QE'L:; : (39)

Formulae for the more general case of transmission by a group of spectral lines
will be given later on, in Section 7.

It is obvious that the two operations just performed, namely, the averaging of
the absorption over a spectral interval and the integration over all angles of inci-
dence 6, both being linear, are interchangeable. Hence we can as well carry out the
integration over the angles first and then average over the fluctuations of the ab-
sorption coefficient. From (8.7), on substituting the value (2.7) for j we have

indeed
7 = [2Ed3 () Lo ' (3.10)

The averaging extends again over the rapid fluctuations of & in a small spectral
interval, and the resultant transmission function 7y is a function of the thickness u
and of a generalized absorption coefficient [ whose variation with frequency is much
slower than that of the original coefficient k.

4. The General Transfer Problem

We shall now go back to our general expression (3.1) for the flux emitted by an
atmosphere of arbitrary constitution. We may carry out under the integral of (8.1)
the process just described of averaging over the rapid oscillations of & and have by
(8.10) for the flux arriving at w = uo

UL

Fe- /d P, (=) d (1)

0 Ug

This is the fundamental formula which solves the radiative transfer problem:.
We cannot, however, reduce the solution any further, since (4.1) involves the rela-
tion between u and T which is not given analytically but is a purely empirical re-
lation. Indeed, 7, is a function of the thickness of the absorbing matter u while f;
is a function of the temperature T at each point of the atmosphere. The functional
relationship between T' and u is different in each atmosphere. It is therefore con-
venient to solve (4.1) by graphical integration, a method introduced by Miigge and
Moller (83). We shall present this method in the form developed by the writer (69).
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By means of an integration by parts we obtain from (4.1)

@ U hae? @
d
F= '--] fbe/dV l +ﬁuf—j—£—€7;d1’ (42)
0 uy U 0

In place of u we introduce the temperature T’ as independent variable and have

ﬁu 'rfdz! */(‘iT 5;(; th ﬁ]fdfbr dv

We introduce the abbreviation

df" @ vy o = Q (u, T) (4.8)

0

Furthermore, as a special case of this

l(j}b 75 dy

A similar expression is valid at the upper boundary T, (u,). Substituting these ex-
pressions in (4.2) and putting u, = 0 we get

Ty
i = J @ (o T AT (44)
0

Ty I : 0
F=[Qumar + [qm,T)dT + J QUu(Ty), T) dT 4.5)
0 ' To 1

It is seen that the three integrals together give a closed path in the @ — T plane.
The area enclosed by this path is equal to the flux F.

The quantity @ is a function of the two variables u and T, and, as seen from
(4.8), it can be computed once and for all if the transmission function r; is known.
@ and T are essentially the variables of a diagram which is used to carry out graphi-
" cally the integration in (4.5). Such a diagram will be called a radiation chart. "The
abscissae and ordinates of the chart are, respectively,

z=al? and y=@Q/2T (4.6)
where a is a constant. We have then

ydz = QAT

4

so that an area on this chart is equal to a flux F as defined by (4.5). The details
of the construction of the chart, that is the numerical computation of the integrals
(4.8), will be given in Part II of this paper.
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We note a few specializations of the above formulae. For u = 0, we have 7, = 1,
and therefore by (1.8).

g d
Q (0, T) =§ZT— fbdv=—&%=4aT3 L))
0 .

where ¢ is Stefan’s constant of black body radiation as defined before. From (4.6)
we see now that for u = 0 we have y = 20%/a? so that u = 0 is represented by a
straight line on our chart. Furthermore, since 7, decreases as u increases we see
from (4.8) that u = 0 corresponds to the maximum value of § for a given tempera-
ture T. The straight line u = 0 forms therefore the upper edge of our chart. For
u = o we have 7, = 0, and by (4.3) this gives = 0 so that the z-axis of our
chart represents a layer of infinite thickness.

0

!

[/

(e 0]
« T
Fic. 4. .

Unless 7, is identically zero in some part of the spectrum (which is not the case
in practice), a slab of infinite thickness u must absorb all radiation falling upon it.
If the slab is moreover isothermal, it follows from Kirchhoff’s law of Section 1 that
the slab must itself radiate as a black body of its own temperature. This relation-
ship is very useful, as it permits us to replace black surfaces, such as the ground or
clouds which frequently occur in computations of atmospheric transfer, by isother-
mal slabs of infinite thickness. In the practical use of the radiation chart this
method is constantly applied.

Fig. 4 shows a schematic view of the radiation chart. The abscissae increase
from right to left and the ordinates are proportional to @ by (4.6). The vertical
lines in the drawing are consequently isotherms, T' = const., while the slanting
curves are curves of constant thickness, u = const., which we shall call isopleths.
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Tt is seen from (4.4) and (4.5) that an area such as indicated by the dashed triangular
boundary at the lower right of Fig. 4 represents the absorption of an isothermal slab
for black body radiation of its own temperature, while the strip above the dashed
wedge and limited by the upper edge of the chart would represent the emission of
the isothermal slab, the temperature of the slab and of the radiation being that
of the isotherm which bounds the triangles on the left.

The point at the right of the chart to which all the isopleths converge represents
‘the absolute zero of the temperature; it follows from (4.5) that our integrations
extend always to T = 0. It is not necessary, however, to have the actual chart
extend to the absolute zero, since we shall see that for sufficiently low tempera~
tures the path of integration on the chart always follows closely one of the isopleths
u = const. Consequently part of the area to be evaluated has always the form of
the wedge-shaped area of Fig. 4. Areas of this type for various values of T and u
have been calculated once and for all and are given in an auxiliary table printed on
the chart. The actual chart extends only over a range of temperatures that occurs
in the atmosphere, from +40°C to —80°C.

5. Atmospheric Radiation Chart

Thus far we have not specified the nature of the absorbing medium. In the
atmosphere there are two radiating substances, water vapor and carbon dioxide.
Ozone has also absorption bands in the infrared region, but its influence upon
infrared radiative transfer in the lower atmosphere is negligible, while it may be-
come of some importance in the stratosphere. In the present monograph we deal
mainly with heat transfer in the lower atmosphere and we may disregard ozone as
a radiator. The relationship between water and carbon dioxide radiation is rather
complicated, partly because the relative ratio of water vapor and carbon dioxide
in the atmosphere varies between wide limits. In the radiation chart this difficulty
has been overcome by an approximative method. It is found that the absorption of
carbon dioxide is concentrated chiefly in one rather narrow region of the spectrum
where it is very intense. Hence the atmosphere, even in relatively thin layers, is
practically opaque with respect to this particular radiation. Let us now consider
the fundamental formula (4.1) for the flux

u;d
F=——ﬁv fo 52 du
Ug

Now in the spectral interval occupied by the carbon dioxide band the absorption of
carbon dioxide is very intense while outside of this band it is practically zero. The
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integration over » will in this case only extend over the width of the band. Within
the band 7, will decrease very rapidly with increasing u, so rapidly indeed that we
may put f5 = const. in an interval of « in which 7; decreases from unity to zero.

Now
[irau=]o[-
b 0
so that we may write approximately
Feo, = d )
co, = 6[ fodv (5.1)

the integration extending over the width of the band. Hence at each level of the
atmosphere the flux created by the carbon dioxide band is equal to that fraction
of the black body radiation contributed by the carbon dioxide interval which cor-
responds to the temperature of that particular level. We may express this in our
chart by drawing a carbon dioxide isopleth on top of all the other isopleths. The
wedge-shaped area above this isopleth represents the fraction of the black body
radiation originating in the carbon dioxide band. The isopleths below this top
isopleth represent then only variations in water vapor thickness, the amount of
water vapor increasing as we go downwards on the chart. Now according to defini-
tion the thickness w is the total amount of absorbing matter contained in a given
slab, the thickness being measured in a direction normal to the slab, i.e., vertically
in the real atmosphere. Hence, if p is the density of water vapor, we have by (2.2):
2 Po

u=/;>dz=§fwdp (5.2)

% ?
where w is the ratio of water vapor to air density and g the acceleration of gravity
and where z, and z represent the boundaries of the slab and po and p the pressures
at these boundaries.

Tt has been found that the absorption of water vapor, more accurately the ab-
sorption coefficients, depends upon the air pressure. This dependence of the ab-
sorption upon the pressure is rather complex; it is discussed in detail in Section 8,
below. It will be shown there that an increase or decrease in air pressure by a factor
a, say, has very nearly the same effect as a change in optical thickness by the factor
+/a. It follows that the pressure effect may be taken into account by introducing a
“reduced specific moisture” wy/ ﬁ: (where p, is a standard pressure, 1000 mb,
say). We have then '

1 Po
u= Efw\/p/p, dp (5.8)

4




USE OF THE RADIATION CHART 23

For most practical purposes we may put g = 1000. The formula remains unchanged
if we express w in units of grams of water per kilogram of air as is customary, and
at the same time change the unit of pressure from the c.g.s. unit to a millibar.
Formula (5.3) will then give the moisture thickness in grams of precipitable water
per cm?.

Before proceeding to show the actual use of the chart, we shall briefly indicate
how radiative cooling or heating in the atmosphere is computed from the flux F
“obtained by means of the chart. In the first place it seems useful to notice that the
actual flux at any given level is the difference between a flux component directed
upwards and originating in the layers below that particular level and a flux com-
ponent directed downwards and originating in the layers above that level:

F = Fup — Faowm (541)

It may be noted that since the flux in the carbon dioxide band is equal, at any
level, to a definite fraction of the black body radiation corresponding to the tempera-
ture of that level both in upward and downward direction, the resultant flux of
carbon dioxide radiation vanishes in the approximation of the chart. This is a fair
approximation to the truth in the lower atmosphere (for the upper atmosphere see
Section 12). The upward and downward fluxes may be recognized as distinct areas
on the chart (see Fig. 5). If F is the resultant flux at any level, it follows from
the first law of thermodynamics that the divergence of this flux, dF/du, must be
equal to the loss of heat energy of the layer of thickness du. In practice it is rather
inconvenient to calculate this derivative, instead we may compute fluxes at a nur-
ber of successive levels; then F; — Fp will represent the loss of heat of the layer
between the levels (1) and (2), etc. If we assume that this amount is distributed in
the layer so as to cool or heat it uniformly, the mean cooling AT (i.e. averaged over
the height of the layer) per unit time will be given by the formula

CPAT(Pl—pz)/‘l]:Fx"‘Fz (55)

the factor on the left being the heat capacity of the layer per cm? cross section. If
the pressures are given in millibars we obtain from (5.5) the following numerical
formula for the cooling

F,—F,
Pr— P2

AT = 4.1

(5.6)

Formula (5.5) presupposes evidently that the flux is expressed in calories per unit
time; (5.6) gives the fall of temperature per unit time. In our radiation chart the
flux is expressed in calories per three hours, hence the cooling obtained from (5.6)
will refer to a period of three hours.
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We shall now discuss some actual applications of the graphical method of ob-
taining the flux. Consider the path of integration given by formula (4.5). Assume
that we want to obtain the total radiation received from the sky at the ground.
The first integral in (4.5) goes from the absolute zero of temperature to the tempera-
ture T, of the ground along the upper edge, u = 0, of the chart. The second in-
tegral goes from there along the actual (T relationship in our atmosphere to the
temperature T, at the top of the atmosphere or rather at a point so high that all
moisture is practically below it (usually one need not go extremely high for this
purpose). This path is obtained on the chart by plotting the actual values of T
and u, where T is the temperature at a variable level and % the total moisture below

(a)

—

(c) | (b)
T b T
Fr

G. o.

this level as computed from (5.8). The last integral in (4.5) goes from the point
us (T) representing the top of our atmosphere to the absolute zero of temperature
along the isopleth u = u,. Our total downward flux is now represented by an area
such as designated by (a) in Fig. 5.

Applying a similar procedure to the flux coming from an isothermal layer of
infinite thickness, we see that this flux is given by the area of the triangle to the
right of the isotherm giving the temperature of the layer. The triangle represents
therefore the black body flux, a fact that has already been derived in the previous
section. In Fig. 5 this black body flux of temperature Ty, which might be taken as
the emission of the ground, is given by the triangular area (a) 4 (b). The net flux
(which is the net loss of heat at the ground) is equal to the difference of the upward
and downward flux and is represented by the area (b).

. Tn order to determine this area we may use the auxiliary table on the chart
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which gives us the wedge-shaped area to the right of T1. The remainder of the area
may be measured by means of a planimeter. If no planimeter is at hand, we might
approximate the moisture curve by a succession of straight lines and thus divide
the area into a number of triangular and trapezoidal sections each of which can be
evaluated without difficulty. Usually a small number of such subdivisions, three or
four, say, will give a reasonable degree of accuracy. We might also proceed by tak-
ing from the auxiliary chart the wedge-shaped area to the right of T's and below the
isopleth w = wy; there remains then only a small area above u = u, to be evaluated
by means of a planimeter or by the method just indicated.

Assume now that we want to compute the flux at a higher level in the atmos-
phere. Let To in Fig. 5 represent the temperature at that level. The downward
flux coming from the atmosphere above our level is again found in the same way as
before, the thickness u being now counted upwards from our level as zero. The
downward flux is therefore again given by an area of the type (a). The upward flux
originates partly in the atmosphere below our level and partly at the ground itself.
‘We plot again the u(T) relationship on the chart, now counting « downwards with
our fixed level as starting point % = 0; we continue in this way until we arrive at
the ground, whose temperature may be Tp. The radiation of the ground itself is
now replaced by that of an infinitely thick isothermal layer of temperature T5.
This means that on our chart we have to go all the way down along the isotherm Ty
The upward flux at our reference level Ty appears now on the chart as the area

(a) + (b) 4+ (c). The net flux is the difference between the upward and downward
fluxes and is given by the area (b) + (c) in Fig. 5, which may be measured in the
manner indicated before.

In a similar fashion it is possible to take into account clouds present in the at-
mosphere. A cloud top as well as a cloud base represents a black surface and both
are replaced by isothermal layers of infinite thickness. Thus, for instance, if the
cloud fop is located at the level of temperature T’ in Fig. 5, the area (b) will represent
the net loss of heat from the top of the cloud. If on the other hand the cloud base
is at the level of temperature T, then the area (c) represents the net gain of heat
at the cloud base due to radiation coming both from the ground and from the moist
air below the cloud. The case of a ground inversion is represented in Fig. 6 with
the reference level at the ground; the area to be evaluated consists now of two parts,
one of which has negative sign.

Fig. 7 illustrates a direct way of obtaining cooling values from the chart. The
two moisture-temperature distributions from the upper and lower boundaries of
the slab in question are drawn and the area between shaded. This represents
the difference of fluxes F; — F;. The crosshatched strip to the right is again de-
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termined from the auxiliary table as a difference of two wedge-shaped areas.
The remainder of the area consists of two parts with opposite signs; it is
seen, however, that if we go along the contour as indicated by the arrows, we en-
circle the two parts in opposite sense; we can therefore determine the area by a single

N\
d

4

Fia. 6.

run of the planimeter. Using this method, one can plot the moisture curves of
several successive levels on the same chart and rapidly obtain the cooling in each
layer.

In the interior of a cloud we have black body radiation both in upward and down-
ward direction and the resultant net flux which is the difference of the upward and

Fie. 7.

downward fluxes is extremely small. The loss or gain of heat which takes place at
the boundary is usually distributed through the cloud by convective action. If we
take F, and F, to mean the net fluxes at the base and the top of the cloud, respec-
tively, formula (5.6) may still be applied to compute the cooling of the cloud by
radiation. | ‘

Finally, the method of obtaining the u(T) relationship which is plotted on the
chart may be illustrated by an example. Table 2 gives an actual sounding, the
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first three columns giving pressure, temperature, and specific humidity. The fourth
column gives the mean specific humidity in each layer bounded by two points of
the sounding. The fifth column indicates the thickness of each layer in millibars,
the sixth column gives the pressure correction factor of the absorption V/p/p,,
which was discussed at the beginning of this section. The effective amount of
moisture in each layer is the product of the figures of columns 4, 5, and 6 divided by
1000 and is contained in column 7. By adding up the values in column 7 beginning
from a given reference level and going either upward or downward from that level
we obtain the values in the last three columns. These are the moisture thicknesses
of the form (5.8). If they are plotted against the temperatures of column 2, curves
of the type of Fig. 4 are obtained, and the areas under these curves can be evaluated
in the manner indicated. It is often more convenient to plot the effective mois-
tures as contained in column 7 on a sheet of graph paper and to obtain the values
of column 8 by graphical integration.

TaBLE 2
1 2 8 4 5 6 7 8 9 10
Sounding Mean Ef. u for reference level at
p{mb) H{°C) wlgr/kg)| w Ap vp/pe  moist. 1015 710 505
1015 10 6.7 0 1.86 1.56
6.3 65 99 0.41
950 7 5.8 0.41 0.95 1.15
5.5 80 97 0.16
920 7 5.3 0.57 0.79 0.99
4.6 130 98 0.56 °
790 —1 3.9 1.13 0.23 0.43
3.6 52 87 - 0.16
740 —4 8.3 1.29 0.07 0.27
2.9 29 .85 0.07
710 —2 2.5 1.36 0 0.20
1.9 45 . .88 0.07
650. -8 1.3 1.48 0.07 0.13
1.2 73 78 0.07
580 —14 1.1 1.50 0.14 0.06
1.0 virk e 0.06
505 —16 0.9 ’ 1.56 0.20 0
0.9 85 .69 0.02 :
470 -—18 0.8 1.58 0.22 0.02
0.5 124 .64 0.04
‘850 —34 0.3 1.62 0.26 0.06
0.2 49 57 0.01
<800 — 44 . 1.63 0.27 - 0.07




PART II. STRUCTURE AND ABSORPTION OF INFRARED BANDS

6. Absorption of Spectral Lines

Tn texts on spectroscopy a number of effects are indicated which determine the
width of spectral lines (9), (14). Among these, only two are of any importance for
infrared lines under atmospheric conditions. These are first the disturbing effect
upon radiating gas molecules of neighboring molecules known as impact broaden-
ing or pressure broadening of the lines. The second effect is the so called Doppler
effect, which is due to the motions of the radiating molecules themselves. Under
atmospheric conditions, however, the Doppler effect is usually much smaller than
the pressure broadening effect and becomes indeed noticeable only if the pressure
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Fia. 8. Spectral line.

effect is sufficiently reduced. This is the case in the upper stratosphere, while in
the lower stratosphere and the troposphere the shape of the spectral lines is practi-
cally determined by pressure broadening alone. Under these conditions it has been
found that the shape of the line, i.e., the variation of the absorption coefficient with
frequency is given by (Fig. 8),

k() =

§ a
T

S is called the total intensity of the line; indeed, .

G+ 6D
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and a is called the half-width. The maximum value of k is reached for » = »y and
is equal to S/re; forv — vy = * a the intensity of absorption has sunk to 8/2xa,
one half of the maximum value.

We shall now calculate the fraction of incident radiation absorbed by a spectral
line of the form (6.1) if a beam traverses a column of arbitrary thickness u. We
assume that the incident intensity I, is constant within a certain interval A» of the
spectrum and we make Ay so large that outside of it the absorption of the considered
line is negligible. The radiative energy incident in Av is Io Av and we define the

fractional absorption in Av as

JSL—-Ddr 1 . ,
A= —Bﬁl—e ) dv (6.2)

where k is given by (6.1). If we make the interval Av sufficiently wide we might
without appreciable error introduce — ® and -+ ® as limits of the integral. We
substitute (6.1) into (6.2), put for brevity

z = Su/2re (6.3)

and introduce a variable s by
i SO IR S [P 1
— = tg2 » hence PR cos’? 5-= 53 (coss+1)

(6.2) becomes now
+x

AAv = af (1 — gzo80—7) % <tg%) ds

and by means of an integration by parts

+x +x
AAy = a (]__g-«zeoss-—-z)/cotg% +aj:v8in8e‘zcm:—ztg§ds

The first term has the form 0/0 at the boundaries and vanishes if numerator and
" denominator are differentiated. The second term may be written
+x
AAy = aze™® f (1 —coss)e " ’ds
-
This integral can be expressed in terms of Bessel functions.! A Bessel function of the
“order 7 is defined by the power series

@A (=2t @/9rtt (/ntE :
T2 () = Gl ~ Tim + 1)1 2:(n+9)!"31(n+3)2+ """ (6.4)

1 See for instance, Whittaker and Watson, Modern Analysis, ch. 17.
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(where 0! = 1! = 1); z might be a real or complex number. It is seen from (6.4) that
Ja(—32) = (—D)*Ja(2) (6.5)

The Bessel function may also be obtained by means of the following integral,!

where 2 =+/— 1,
+x
1o = L [rrions 69

If we put z = i and make use of (6.5) we obtain finally for our integral (after
Ladenburg and Reiche)
Adv = raze== [J, (ix) — 1 J1(ix)] = 2ma f(z) 6.7)

where z is defined by (6.8). The Bessel functions appearing here have a purely
imaginary argument. These furictions are tabulated > and ‘values of f(z) are given

in Table 3.
TaBLe 8

f@) = ze™® [Joliz) — i Ju(iz)]

:  f@ | = @ | = f@ s 1@
0.01 0.0099 0.22 0.198 0.70 0.521 1.9 1.016
0.02 0.0198 0.24 0.214 0.75 0.548 2.0 1.048
0.03 0.0295 0.26 0.230 0.80 0.575 2.5 1.192
0.04 0.089¢2 0.28 0.246 0.85 0.601 3.0 1.320
0.05 0.0488 0.30 0.261 0.90 0.626 3.5 1.436
0.06 0.0583 0.32 0.276 0.95 0.650 4.0 1.543
0.07 0.0676 0.34 0.291 1.00 0.674 4.5 1.643
0.08 0.0769 0.36 0.805 1.1 0.719 5 1.734
0.09 0.0861 0.38 0.3_20 1.2 0.762 6 1.912
0.10 0.095¢ 0.40 0.334 1.8 0.803 7 2.072
0.12 0.1132 0.45 0.368 1.4 0.842 8 2.222
0.14 0.1309 0.50 0.401 1.5 0.879 9 2.360
0.16 0.1480 0.55 0.432 1.6 0.916 10 2.491
0.18 0.1652 0.60 - 0.463 1.7 0.950
0.20 0.1818" 0.65 0.492 1.8 0.984

We shall first study the behavior of the expression (6.7) for small and large
values of z. For small z we see from (6.4) that Jy (1z) — 1 and 7 J1(iz) — — 2/2,
which is small. Further ¢== = 1. Hence for small z, using (6.3)

! AAv = 2raz = Su (6.8)

so that for small « (thin layers) the amount absorbed is equal to the product of the
line intensity and the thickness of the layer.
For large values of z, on the other hand, we may use a formula which is proved

1 Whittaker and Watson, ch. 17. 23.
! Jahnke-Emde, Tables of Functions, 2ad ed., Leipzig, 1933.
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in the theory of Bessel functions. It is shown there that if x is large we have ap-
proximately

Ly, @rer -
Ja (i) — Vo . (6.9)
which if applied to (6.7) yields immediately
Ay =~/8rax = 2v/Sau (6.10)

~ While the mathematical derivation of [(6.9) implies that = is actually large, it is
found that a good approximation obtains already for rather moderate numerical
values of z, say = 3. This means that for layers of moderate thickness (6.10) is a

s

Single line or
widely spaced lines

- L5

xe™ [Jo(ix) - 13, (ix)]

v .
Fie. 9. Absorption of a spectral line, after Ladenburg and Reiche.
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good approximation, and we see that for such layers the absorption is proportional.
to the square root of the thickness u and of the line intensity S.

On account of the great significance for the subsequent investigations of this
type of absorption we give, in Fig. 10, a somewhat more detailed analysis. Fig. 10
shows the actual transmission as a function of » for three different thicknesses cor-
- responding toz = 0.1,z = 1, and z = 5, values which have been marked:by small
arrows in Fig. 9. For z = 0.1 we are obviously in the region of the linear absorp-

2¢
TN

—

N

Fig. 10. Absorptior of a spectral line.

tion law (6.8), the area above the curve which measkres the total amount of radia-
tion absorbed being proportional to . For z = 5, on the other hand, we are in the
domain of the square-root absorption law (6.10), and the physical significance of
this may be inferred from the figure: The center of the line has been absorbed com-
pletely and any further increase of absorptions takes place in the wings of the line
at a large distance from the center. We may express this mathematically by neglect-
ing o? in the denominator of (6.1) as compared to (» — »y)’. We may then write, say,
ku = 22a?/(v — vg)? = v,
and we have from (6.2):

anr =z — ) Y

=92 \9}%&2 (1 - 3.")

and this is indeed identical with (6.10).

w 0 [
dv
+ 22t f e = = \/8rxa?
. Vv
b
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The above analysis is due to Ladenburg and Reiche (51); the approximate pro-
portionality of the absorption with the square root of the optical thickness for
. spectra of this kind has been verified in numerous spectroscopic investigations.
The values of f(z) as defined by (6.7) are plotted in Fig. 9 with V/z as abscissa.
The straight line which goes through the origin of the cosrdinates represents the
function 4/2x/x which by (6.9) approximates f(z) for large z. For intermediate
values of z a better approximation may be obtained from the numerical formula

AMv/%ra = 0.854/z — 0.17

which intersects the axis of abscissae at \/z = 0.20 and can of course only be used
for values of v/z larger than this.

* * *

The infrared absorption bands contain usually a very large number of lines of
the type considered. In some important cases, for instance in the water vapor
bands, the lines are so far apart from each other that each one absorbs independ-
ently of the others. The total amount of radiation absorbed is then a sum of in-
dividual contributions of the form (6.7). Experiments have shown that it is per-
missible to assume that the half-width e of the lines is roughly the same for all lines
of one band. Let us now assume that there are N lines in a given interval of the
spectrum, all having the same half-width a. Remembering that z = Su/27a we
‘obtain from the preceding formula for the combined absorption of these lines:

AAv = 0.85+/2ra (24/8) Vu — 0.17-2reN (6.11)

This relationship represents a straight line in a diagram such as Fig. 9 where 44»
is plotted against+/u. We mily write

AAv=a'\/;-—-b

If the line intersects the/u axis at\/uo we have b = a\/z—t‘o_and since b is small we
may write here in sufficient approximation a = 4Av/x/u. Hence, using the numeri-
cal value of b from (6.11)

(AN )\ 15 = b Av = 0.17 (2ra/d) | (6.12)

where d = 1/NAv is the mean distance of consecutive lines in the spectrum. We
~ can thus determine the ratio a/d by measurements which do not involve a spectro-
scopic resolution of the individual lines.

If u is sufficiently large, so that the somewhat simpler approximation (6.9) ap-
plies, we have

Ay = 24/a (ZV/S)V e (6.13)
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In infrared spectroscopy it is often impossible to measure the individual lines
except with instruments of the highest resolving power. It is therefore difficult to
decide whether a given absorption is of a continuous character or composed of .the
absorption of individual lines. If we plot the absorption against the square root of
the optical thickness, we obtain a straight line in the case discussed here. If on the
other hand the absorption is that of a continuous spectrum so that by (6.2)

INIj=1—A=¢™ .
we obtain a straight line if we plot log /I, against the thickness u. This method
has been extensively used by Strong (38). It was found from the observations that
in cases of interest for atmospheric transfer the absorption is clearly of the square-
root type. '

In some cases it is possible to obtain more accurate information about the spec-
tral lines from absorption plots of a related type. Matheson (52) has studied the

tog (Ad v/}

069 : log te

le—— 2 log 2V&x§ ——
Fie. 11. Matheson diagram.

transition from the linear law (6.8) to the square-root law (6.10). If we take first
a single line and plot log (AAv/u) against log u (Fig. 11) we see from (6.8) that for
small values of u the curve approaches asymptotically a horizontal straight line,
while for large u it approaches a slanting line. The intersections of these lines with
the axes determine the quantities indicated in Fig. 1§ which are 2 log 24/aS and 8,
respectively. It is then possible to determine o from the plot. If we have a number of
lines absorbing simultaneously, the corresponding quantifies will be 2 log 24/a 24/ S;
and 24/, respectively. Assuming that in a certain interval the lines are of practi-
cally equal intensity S we see that 5+/8; and = §; reduce to+/NS and NS respec-
tively, where N is the number of lines in the interval. One can again obtain « from
the plot if N is known; often N may be obtained from molecular theory. In this
way Matheson determined the line width of carbon monoxide. The method seems
to work well for diatomic molecules which have very regular spectra but would
seem to break down for polyatomic molecules such as water vapor where the spectral
lines are by no means of nearly constant intensity.
* * *

So far we have only discussed the absorption of a straight beam by a spectral

line or a sum of lines. To conclude this section we shall briefly compare the absorp-
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tion of straight columns and of slabs in the cases of exponential and square-root
absorption. '

For the absorption of a continuous spectrum of coefficient & we go back to
Section 2. If we again define the beam and slab transmission functions by

rp=1I/Ly, 11=Ff/fo
we have for a continuous spectrum
T = i
and by (2.8)
’ Ty = 2B (bu)
The function 2Ei; has a shape very similar to that of an ordinary exponential.
Roberts (89) found that a close numerical approximation is obtained by putting

1y = g /2 (6.14)

so that a slab of thickness u is practically equivalent to a linear column of length
1.5u.

On the other hand, if we have a spectral line or a sum of lines, the absorption
is proportional to the square root of u. If in (6.18) we put

2Va (ZVE) =Vel/r

where [ is a constant characterizing the intensity of the square root absorption, we
may write

r1=1—Valu/r (6.15)

and we obtain the transmission of a slab from (3.8) which yields
v =1 5/2lujz =1~/ (178 2l/x

Hence, in the case of square-root absorption a slab of thickness u is mathematically
equivalent to a linear column of length 1.78 #. (On limited applicability, see Sec. 7.)

7. Absorption of a Band Spectrum

Tt is obvious that the increase of absorption with the square root of the thick-
ness cannot go on indefinitely if several lines are present in the spectrum, as for
sufficiently thick layers the absorption strips of neighboring lines must overlap. In
other words, a thickness must finally be reached in which almost all the radiative
energy has been absorbed from a given interval of the spectrum, and a further in-
crease in thickness can produce only a smaller increase in absorption. Hence the
square-root formula must fail when the absorption strips of neighboring lines
begin to overlap appreciably. '
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This case has been treated by Schnaidt (55) and by Elsasser (42). Schnaidt uses
a numerical approximation in order to account for the reduction in absorption due
to the overlapping of neighboring lines while Elsasser develops a mathematical
method for a somewhat idealized model of an absorption band: We shall now indi-
cate the principle of the latter method; the numerical results obtained by the two
authors show very little difference.

In place of one spectral line we introduce a periodical pattern of equal and equi-
distant lines (Fig. 12). In formulae, we assume the absorption coefficient to be

+w

S S
ko) = > = G—ﬁflﬁ)—fﬂé (1.1)

-2d -d 0 +d. +2d
Fi6. 12. Schematical “band spectrum.”

where the individual line is again of the form (6.1) and where the line centers are
located at 0, =d, =2d,..... This expression can be brought into another, more
convenient form. In the theory of functions it is shown that any periodic function,
such as (7.1) can be expressed by means of trigonometric functions.! We shall omit
the details here and simply indicate the result. If we put

s = 2mp/d, B=2ra/d ' - (1.2)

we find for (7.1)
_ S sinh§
~ d cosh g — cos ¢

k() (7.9)

where as usual sink and cosh designate the hyperbolic sin and cos. If we now as-
sume the incident intensity to be constant throughout the spectrum, we may define

the transmission functions as
+4x
1 {8 )%
Ty = %_fe k(s dg . . (7.4)

where k is given by (7.8).

1 Whittaker and Watson, Modern Analysis, ch. 7. 4.
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We consider first the special case in which the lines are far apart from each other,
d» a, or § small. We have then cosh 8 = 1 and sinh 8 = 6 and (7.3) becomes

k() = SBu/d sin”(%) ~ (/sin® (7;) —Cy - (1.5)

Introducing into (7.4) we find readily that

1fe‘0ﬂdy
=
d 'zr1 yVy—1
It follows that (with z =y — 1):

® w
dr;, 1 fe%dy € e O e’

—— = | —=dz =
aC 71'1 \/y-—l 1ro /% ? /7C

Integrating again with respect to C we find

C
Ve ¢
The upper limit of the last integral has to be chosen so that r; = 1 for C = 0 which
shows that the limit is +- 0. The function which appears here is known under the
name of probability integral. Tt is usually defined as

z

2 :
—= fedx (7.6)

¢_(x) = _\/;
0
and on using this symbol we have finally, in view of (7.2) and (7.5),
p=1—¢ (‘\/5) =1 — ¢ W/ wSau/d) .7
The probability integral may be developed into the power series
2 z
¢ (z) -—0\/7;(:6—-3" +...0)

and for small values of the argument (7.7) reduces therefore to
r=1—2+/Seu/d (7.8)

‘Since there is one line per spectral interval of width d, the absorption of a single
~ lineis. 2/ Sau in agreement with (6.9). Formula (7 .8) becomes identical with (6.15)
if we define a generalized absorption coefficient of our band by

| = 2raS/d? (7.9)
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On introducing this abbreviation into (7 27) we may write

w=1—1¢ (4/%) (7.10)

While this formula has been derived for a regular absorption pattern of the type

represented in Fig. 11, we might also use as an approximation for bands of more.
irregular structure, such as the water vapor bands, in which the lines are no longer

equidistant and of equal intensity.

\
‘5 ] \

Fie. 18. Transmission functions of a straight column.

The transmission function is generally defined as the ratio of transmitted to
incident intensity in a given spectral interval, and we have by (6.2)

1
'rI--IoAvfIdv—-l—-A

A

The transmission 77 of a slab is again connected with 7, by (8.8).
We have by (7.8) and (7.9) for sufficiently small values of u

7 =1—~/2u/r (1.11)

and hence the relation between 4 and [is in the region where the square-root law

A =~/2u]x (7.12)

applies




BAND TRANSMISSION FUNCTIONS . 89

On the other hand, on using (7.12) we get from (6.18) for the transmission of a
group of widely separated but otherwise arbitrary lines of intensities S;

=1~ 2+/au (24/8:)/dv
V1 =20 (Z+/8:) /v (7.13)

The generalized absorption coefficient thus defined may now be inserted in (7.10)
and we obtain a formula for the absorption of a band of arbitrary composition. It

and hence

1.0

2Ei; ()

N
Y

\—-—..

[ ——

o) .5 1.0 X 1.5

F1a. 14. Tfansmission functions of a slab.

is of course not to be expected that the absorption of such a band should follow
(7.10) accurately, since the latter was derived for the regular pattern represented
in Fig. 12, but it would be extremely difficult to derive mathematical expressions for
the absorption of a more complicated band and (7.10) may be considered as an
approximation of the general case with a suitably chosen value of I.

~ We can finally compute the transmission in a slab of absorbing material from
(8.8) if we substitute the value (7.10) of r;. After a rather cumbersome but straight-
~ forward calculation we obtain, with z = lu/2,

rr=e¢ @ =01-¢/2) ( - 4—?—) + 26; 4/% 2z — 1) (1.14)
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Some of the transmission functions which appear in the present analysis are numeri-
cally given in Table 4. The first two columns give the functions Ei, (z) and 2E1; (),
while the next two columns give the band transmission functions 7, (z) =1— ¢ «/z)
and 7; (z) = ¢(z) defined by (7.14). In order to compare the transmission of a con-
tinuous and that of a band spectrum the functions ¢~ and 1 — ¢ (\/2/2 ) are
plotted together in Fig. 18; in a similar fashion, the corresponding transmission
functions for a slab, 2Ei;(x) and o(z/2) are plotted in Fig. 14. '

Tapre 4. TransmissioN FUNCTIONS (THE FIRST TWO FROM (8) )

Ein is defined by (2.8), ¢ by (7.6), and ¢ by (7.14).

z Eifz) 2EiG(z) 1—¢(Va) o) z Eis(z) 2Ei(@) 1—9¢(V2) o)
0 1.0000 1.0000 1.0000 1.0000 1.0 1485 2194 1578 .0859
0.01 9497 .9806 8875 .8509 1.1 .1283 .1918 .1380 0729
0.02 9131 .9619 8415 J7910 1.2 1111 -1679 .1213 .0621
0.03 8817 9440 8065 7461 1.8 0964 1492 .1069 0531
0.04 .8585 9266 773 7091 1.4 0839 1291 .0943 0455
0.05 8278 8098 7518 6778 1.5 0731 1134 .0833 .0391
0.06 .8040 8985 7290 6499 1.6 0638 0998 0736 0837
0.07 7818 8777 7083 6239 1.7 0558 0879 0652 0291
0.08 7610 8622 6892 .6008 1.8 .0488 0774 0578 L0251
0.09 7412 8472 6714 5796 1.9 .0428 0683 0512 0217
0.10 1225 .5826 6547 5599 2.0 0875 0603 0455 0188
0.15 .6410 7646 5838 4786 2.1 0330 0532 0404 .0163
0.20 ST42 1039 5271 4163 2.2 .0290 0470 L0359 0142
0.25 B5177 6494 AT95 3647 2.3 0255 0416 0320 0124
0.30 4691 6001 4386 3249 2.4 0225 0368 .0285 .0108
0.35 4267 5553 4028 2899 2.5 .0198 0325 0254 0094
0.40 3894 5146 8711 2588 2.6 0175 0289 0226 0081
0.45 3562 AT78 .3428 2341 2.9 0154 0256 .0201 0072
0.50 .3266 4432 3178 2115 2.8 0186 0227 .0180 0063
0.56 3001 4119 2043 1918 2.9 0120 0201 0160 0055
0.60 2762 3831 2733 1741 3.0 0107 0178 0143 0048
0.65 2546 3566 2542 1585 8.5 0058 0099 .0081 0025
0.70 2349 3821 2367 1440 4.0 0032 0055 0047 0013
0.756 2171 3095 2207 1321 4.5 0018 .0031 0027 0007
0.80 .2008 .2886 2059 1209 5 .0010 0017 0016 0004
0.856 .1860 2693 1923 .1108 6 0003 0006 .0005 0001
0.90 1725 2513 1797 1017 K 0001 0002 .0002
0.95 .1600 2348 1681 .0934 8 0001 .0001

* * &

At this point we might perhaps enlarge somewhat on the physical interpretation
of the transmission functions. We might define 7; as the probability of a beam of
radiation traversing a column of thickness u without being absorbed. If 7, = ¢~
we have

S du=1/k
4]
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hence ke~** is a probability in the ordinary sense. Correspondingly we find

S = Vi) du=1/1

sothatI (1 — ¢ (‘\/ l—u—/—Q— ) is the corresponding probability for a band absorption.
The mean penetration of a beam into the absorber may be defined in agreement
with the ordinary rules of probability theory as '

% = fa;trz du/f:’y du
1] 0

and we obtain for r, = 7%

a=1/k
Furthermore for 7, = 1 — ¢ (/ Tu/2) we get after a few simple calculations
@ =3/2l
so that for & = [ the radiation penetrates further in the case of a band spectrum.
* * *

The band transmission functions (7.7) or (7.10) will reduce to the square-root
formula (7.8) or (7.12) for small values of the thickness u. On the other hand we saw
in the preceding chapter that for extremely small values of u the square-root law
becomes again invalid. We shall see later that the same is true for the formulae
(7.7) or (7.10) if u becomes very small. The question arises therefore of whether
there exists an intermediate interval of u of appreciable magnitude in which the
square-root formula, is actually valid. This can be answered in the affirmative. It
may be seen from an inspection of the numerical values of (7.10) given in Table 4
that the probability integral can be well approximated by the first term of its power
- series for a considerable interval. Up to an absorption of about 659, the deviations
amount to only a few per cent. On the other hand, the deviation which occurs for
very small values of the absorption, (where the simple square root has to be replaced
by the expression (6.7),) depends on the line distance and line width of the particular
spectrum. This deviation may be determined by substituting (7.12) into (6.12)
which yields

/Ty = 0.21 -2%‘5 (7.15)

where u, is a critical thickness for which the absorption becomes practically zero.
The transmission function (7.10) with the correction for small thicknesses just
explained is plotted in Fig. 15 against the decadic logarithm, log lu, (the numerical
" value 2ra/d = 0.5 being used for the cut-off was obtained by assuming « = 0.25 as
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explained in Section 9 and counting the number of lines per unit spectral interval of
the water vapor spectrum in Fig. 16, which gives about d = 3). This curve is des-
ignated by “beam”; the dashed curve is the unmodified transmission curve (7.10)
and in the region where the dashed curve deviates from the solid curve the latter
represents the function (6.7) adjusted so that it will practically vanish at the value
(7.15). The curve designated by “slab” is derived from transmission function (7.14)
with a similar correction for small thicknesses, the function represented for thicker
layers being ¢(lu/2). This plot was used in the numerical computations for the
radiation chart. Itis seen that in the average the distance of the two curves is about
0.21 on the logarithmic scale which corresponds to a ratio of thicknesses of about
5/8 = 1.66. This is intermediate between the values given in (6.14) and (6.15)
while somewhat closer to the latter. It may be concluded that for most practical
purposes in radiation transfer problems the radiation of two-dimensional slabs may
be reduced to that of linear columns by the substitution u — 1.66 u without too

much loss of accuracy.
* * *

We shall close this section ! by deriving a formula for band absorption in the
most general case. We go back to the expression (7 .3) for the absorption coefficient.

If we put
1 —coshp-coss _ and sinh 8 — sin 8 - s
coshf — coss s coshf —cos § mn e
it follows that
- sinh 3 __coshf—cos¢ _ sinh
cosh B — cos ¢ - sinh 8 and ds = cosh8 — cos s de

' Op introducing these expressions into (7.4) and writing for brevity y = Su /(dsinh B) *
we find
. +'
%;_’= 8112111:6 e-—ycoshﬁ+ycos¢d(p=Sinh66—yeoshﬁJ(;(,iy)
the last equality by (6.6) and in view of (6.5). Integrating this with respect to y
and, taking the limits of integration so that 77 = 1 fory = 0and rf = Ofory =

we obtain

rp=sinh 8 f ¢ " Jo (iy) dy ‘ (7.16)
y = Su/(d sinh )

A number of previously discussed cases can readily be derived by specialization
of (7.16). For widely spaced lines and hence sinh g is small so that y is large. We

1 The remainder of the section contains m 'thematical details which will not be referred to later.
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can then use the approximate expression (6.9) for Jo (1) and since for small 8 we
have cosh g — 1 = f2/2 we are left with '

. d
r; = sinh B [ e¥#/% \/g_

2y

4
which is readily seen to be identical with (7.7).
If the spectral lines are close together we have the other extreme in which g is
large. Then cosh 8 is appreciably larger than unity and hence the exponential de-
creases more rapidly than the Bessel function increases. If we write

v
1 — 7, =sinh 8 S e “f Jo (i) dy
0

we see that most of the contribution to the integral comes from small values of y.
Now J, (0) = 1, and the function increases very slowly in the beginning so that we
may replace J, by unity under the integral. Since further for large 8 we bave
sinh B = cosh § we get

ry = S

the transmission is that of a continuous spectrum of absorption coefficient k = §/d.
The last result may be derived more directly from (7.3) which gives & = §/d for
large values of §. Numerically, this is a rather good approximation for, say, 8 = 2.
For 8 = 2 we see from (7.2) that d = ma, so that if the line distance is about three
times the half-width the mean absorption is very little different from that of a
continuous spectrum'. On the other hand for 8 = 1/2 the approximation (7.7) holds
good and for § = 1/2 we have d = 4ma so that for a mean line distance twelve times
the half-width or more formula (7.7) is applicable.

Finally we can derive a generalization of (6.7) from our formula (7.16). In this
case § is again small (distant lines), but now u is assumed to be small too. Hence y
in (7.16) is not in general small, but we can put cosh § = 1. Then

r=8S e Js (iy) dy (7.17)
v

By means of the relations

Do —n BE--DP 40w

which may readily be proved from (6.4) we find
' . d . oy e
e Jo(iy) = dy Tye (Jo (3y) — W1 ()]
and (7.17) becomes '
1= r =3 v [T Gy) — T )] (1.18)
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But y = Su/(d sinh B) = Su/dp for small 8; and since 8 = 9ra/d by (7.2) we see
that now y = z, where z is defined by (6.3). Hence (7.18) is identical with 6.7)
apart from a factor 1/d, which gives the number of lines per unit frequency interval
in the spectrum.

We might say that formula (7.18) for small u in conjunction with the probability
integral (7.7) for moderate values of u yields an excellent approximation of the true
absorption curve up to, say, 85-909, absorption even if the spectrum is highly
irregular, provided only the line distance is large compared to the half-width, as
in water vapor. For very thick layers the probability integral (7.7 ) will tend to give
somewhat too intense absorption for a spectrum of irregular structure. The reason
for this is that with an irregular distribution of the lines, there will occasionally be.
wider gaps in the sequence of lines and comparatively thick layers will be required
until the absorption is complete in these gaps. This is, however, only a qualitative
argument, and the computation of an absorption curve in which both the distances
and the intensities of the lines are distributed irregularly must remain to the future.
A direct experimental determination of the transmission curve for a given spectrum,
such as that of water vapor, is of course possible if the slit-width of the spectroscope
is-suitably chosen, but might be diffcult on account of the considerable interval
of thicknesses that has to be covered.

8. Pressure and Temperature Corrections
So far we have implicitly assumed that the absorption coefficient is independent
of ﬁgégureandtemperature so that the influence of temperature upon radiation is
entively due to the variation of the Planck function (1.6) with temperature, and the
influence of the air pressure upon the radiation is nil. We shall now investigate the
influence of pressure and temperature upon the absorption coefficients.

We first consider the pressure effect. For the subsequent presentation we have
made frequent use of a paper by Schnaidt (55). It has been found that the total
line intensity S is nearly independent of the pressure while the half-width « is a
function of the pressure and increases with the latter, (9), (14). This effect is called
pressure broadening of the spectral lines. It is of course understood that we com-
pare conditions in which the total optical thickness u of the radiation remains
the same while the pressure is changed either by compressing the radiating gas or

+by adding a transparent gas such as air. It is found that the half-width produced
depends on the chemical nature of the broadening gas. Thus for instance in a
measurement of Fowle (22) on the 6x band of water vapor under atmospheric con-
ditions the transmission values obtained are practically identical with those which
Rubens and Aschkinass (29a) had found in steam with only one half the amount
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of precipitable water in the path. From the results of the preceding section we might
safely conclude that, apart from a small temperature influence, the broadening
power of water vapor upon water vapor is just about twice that of air upon water
vapor. Fortunately the gases optically active in the atmosphere are only small
admixtures to the air so that their broadening influence upon themselves and upon
each other is practically negligible. The line widths to be discussed refer therefore
to air as broadening agent and their change refers to a change in air pressure.

According to the theory of Lorentz, confirmed by experiments on spectral lines
in the visible spectrum, the broadening is caused by the impacts which the radiat-
ing molecule undergoes due to the presence of other molecules and a is directly
proportional to the number of impacts. We know from the kinetic theory of gases
that the number of impacts is directly proportional to the pressure and inversely
proportional to the square root of the absolute temperature. Hence if p, and T,
designate standard pressure and temperature and if , is the half-width under these
standard conditions, we may write:

p /T,

a = CL.;; T (8.1)
There are only a very few direct observations of the pressure and temperature de-
pendence of spectral lines in infrared bands. There seemed at first sight little
reason why the theory of Lorentz expressed by (8.1) should ot apply to the infrared
band lines. Direct measurements (36a) of the individual lines of a HCI band at
1.75u made under air pressures ranging from 4 to 12 atm. gave a close proportional-
ity between pressure and half-width, while earlier measurements (36) on another
band of HC] had shown a decrease of half-width slightly slower than proportional
to p. There seem to be no other direct measurements of pressure broadening in the
infrared, but it is possible to obtain rather reliable indirect evidence. We know
that for layers which are neither very thin nor very thick the square-root absorption
law is an excellent approximation of the true behavior of the absorption. We see
from (7.18) that+/lu contains a factor 4/a, so that in the region where the square-
root law holds, the absorption is proportional to 4/ a. Hence it follows from (8.1)
that in this region the absorption should, for constant u, be proportional to the
square 700t of the total pressure. This rule can be tested by experiments of a rather
simple kind, as they do not involve the use of powerful spectroscopes.

In 1938 Falckenberg (46) measured the absorption of heat radiation by a column
of moist air 2.35 meters long; while the moisture was kept constant he varied the
air pressure from 1 atm. to 1/4 atm. It has recently been conclusively shown by
Brooks (87) that for the length of column used by Falckenberg water vapor follows
the square-root law of absorption very closely, and Falckenberg’s measurements
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must_therefore be considered as significant even though they were carried out
without any spectroscope, with black radiating and receiving surfaces. Falcken-
berg found that the absorption varies with the fourth root of the air pressure, a .
result which would indicate that the half-width a is proportional to the square root
of the pressure and not to the pressure itself.

Schnaidt (55) subsequently was able to show that similar results are implied
in the work of a number of earlier investigators hitherto mot interpreted quan-

-titatively. The measurements of E. v. Bahr (35) on the 2.7y band of water vapor
show that the ratio of absorptions for various pressures is very nearly equal to the
ratio of the square roots of the pressures. A similar result, though a less good quanti-
tative agreement, was found in the measurements of Kiihne (49) on the absorption
of water vapor between 43 and 90u. We verified a similar behavior for the band of
carbon dioxide at 14y in the measurements of Hertz (47). The same result appears
from the careful measurements of Wimmer (58) on the carbon dioxide band at 4.3u.
Quite recently Strong and Watanabe (57) in measurements on ozone found a cor-
responding result. We have therefore a considerable body of indirect but definite
evidence in favor of the conclusion that the half-width of the lines is proportional
to the square root of the total pressure. The subject badly needs further investiga-
tion, but until new results are available we may take the last-mentioned rule as the
expression of our actual knowledge of the pressure influence.

Tt must be borne in mind that a pressure effect can only appear if the individual
spectral lines are well separated from each other. As the pressure increases the lines
grow broader and they will finish up by overlapping so completely that a continuous
spectrum with exponential absorption results. The absorption then becomes in-
dependent of o (as shown in the previous chapter). It appears from Strong’s
measurements (31) that for ozone this point is reached at about_atmosphéi*ic pres-
sure, while for considerably lower pressures the absorption is proportional to the
square root of the thickness, corresponding to separate lines. For water vapor the
lines are still completely separated at atmospheric pressure, while for carbon dioxide
they are closer together but here also the square root law of absorption holds at
atmospheric pressure, as has been shown directly by Falckenberg (45).

In the absorption formulae of the preceding chapter only the product fu ap-
pears and ! is proportional to a by (7.13). For actual computations it is more
convenient to assume [ constant and introduce an equivalent variation of u with
pressure. We may now account for the variation of absorption with atmospheric
pressure by multiplying u with a factor

5‘4/547?'
w VpNT
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The factor containing the fourth root of the temperature is usually very close to
unity and may be disregarded. Our correction factor is then simply 1/ 57}7. In the
atmosphere we do not deal with columns of constant pressure as in the laboratory;
instead, the pressure changes continuously with height. The pressure correction
tactor must then be applied at each level. This leads finally to formula (5.3) for
the computation of the corrected optical thickness. '

* * ¥

Up to now we have assumed that the absorption coefficient k is independent of -
the temperature, the temperature entering into our formulae by way of the black
body flux f5. Indeed, the whole theory of transfer as developed in Part I of this
paper was based on the assumption that k is constant, being only a function of the
frequency ». While thisis a first approximation under atmospheric conditions, it is
not rigorously true. We shall now investigate the actual dependence of k upon the
temperature in general terms, the numerical values for water vapor being given
later on.

In any atmosphere the temperature is a function of the optical thickness, or
vice versa, u = u (T). Hence, in any atmosphere the absorption coefficient k, being
a function of T, 1s a given function of u. We consider a straight column of absorber
for which the transfer equation (1.5) applies. If we write du = pds by (2.2),
formula (1.5) reads

ﬂ
du

where now k is a given function of u. In the theory of differential equations it is
shown that the solution of (8.2) is

= —k(I — 1o (8.2)

;k du r - j';: dw
I(u)=—ée" klIye  dw (8.3)
%
It may be verified by substituting (8.3) in (8.2) that this is a solution of the equa-
tion; but it is not the most general solution of (8.2); the latter is found by adding

to (8.3) a term M
. . —fkdu

IT=1e™
where I’ signifies the radiation incident at the boundary u:. The solution (8.3) cor-
responds to I’ = 0. Since in our analysis of atmospheric radiation we usually have
only black boundaries which we replace by radiating layers of infinite thickness, we
may put I’ = 0 without loss of generality. We may write (8.8)

v -—f“lfdw 9 d “f'I:dw
I = —{kle ® dw=floa—e v dw
)

U
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We can now proceed in exactly the same way as in Sections 2 and 3 to obtain the
total flux crossing a horizontal surface in the atmosphere. This involves an integra-
tion over the angles and over the frequency; in addition we introduce the generalized
absorption coefficient ! in place of k in the same manner as before. The details may
be omitted, the final result is a formula which is perfectly analogous to (4.1):

Flu) = — ﬁ,, u}b L, ( f; dw) dw (8.4)

We introduce now a mean value of the absorption coefficient by writing
w
Sldw =1, (w — ) (8.5)

and (8.4) becomes formally identical with (4.1), except that u and w stand for u,
and u, Tespectively, and that I, stands in place of . While ! is independent of the
temperature, I is a function of T. As a first approximation we might assume that
value of 1,, which would prevail in the middle of the layer considered, that is at
3 (w — u). If we take u = 0 and write u again in place of w, we may put in general-

ization of (4.8) }
f o vy o) do = Q (u, T, T (’é))
; |

In order to apply the radiation chart to this case it may be convenient to derive
the new Q from the old one by a change in moisture #. We may therefore write

Q(u, T;T(%))=Q(u~—au, T)

u

where now du is a function of two variables, z and T (—2-> _7If duis known as function

of these variables, proper corrections can be applied to the moisture values u before
they are entered into the radiation chart. However, the actual variation of the
absorption with temperature, especially in the region near where it is most important
for atmospheric transfer, is very little known.

9. The Water Vapor Spectrum

We shall now discuss the actual structure of the far infrared spectrum of water
vapor. For the study of radiative heat transfer it is sufficient to know quantitatively
the course of the generalized absorption coefficients; the data of the radiation chart
which in turn solve the transfer problem may then be computed. The whole infrared
spectrum is schematically represented in Fig. 1, and the generalized absorption
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coefficients finally adopted are plotted in Fig. 19, the ordinates in this figure rep-
resenting the decadic logarithms of I. Most striking in this diagram is the enormous
range of variability of I. Indeed, from the top of the long wave absorption band to
the bottom of the transparent region there is a difference of about 4.5 corresponding
to a ratio of absorption coefficients of 30,000. Hence, in order to produce a certain
fractional absorption at 8-12u a layer about 80,000 times thicker than at 50-100x
is required. While the existence of such intense variations has been known in the
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Trc. 16. A section of the rotational water band, after Randall, Dennison, Ginsburg, and Weber.

laboratory for many years, it remained to the fundamental investigations of Simpson
in 1928 (56) to discover the fact that the heat balance of the atmosphere could not
be explained without taking into account the existence of a band of great trans-
parency of water vapor near 10g. Since that time our understanding of radiative
heat exchange has made rapid strides; the large variability of the absorption co-
efficients has proven more and more to be of basic importance for the understanding
of the atmospheric heat balance.

We begin our discussion of the spectrum at the long wave side where the most
intense band is located. Tt is the so-called rotational band; it originates by a pure
rotation of the water molecule while all the other bands originate by a combination
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of rotation and vibration of the molecule, (8), (7), (12). An exhaustive spectroscopic
analysis of this band was given by Randall, Dennison, Ginsburg, and Weber (29).
Fig. 16 is taken from their paper and shows part of the spectrum with the extraor-
dinary spectral resolution obtained by their instrument. The numbers indicated
are wave numbers. Above the line on which the spectrum is drawn there is another
line on which small triangles are placed. These triangles represent line intensities
calculated from formulae of quantum mechanics, the area of each triangle being
proportional to the intensity of the line. It is seen that there is practically perfect
agreement between the observed and calculated positions of the lines in the spec-
trum. The intensities, on the other hand, are more difficult to compare; the drawn
contour of the spectrum represents an estimate rather than a measurement of the
intensity of absorption. It is extremely difficult to obtain quantitative information
about intensities in this region of the spectrum, since the quantities of water vapor
producing the absorption are minute. The computed theoretical intensities on the

other hand may be considered as fairly reliable; * moreover they involve only one '

well-known empirical constant, the electric moment of the water molecule (1.84-10718
electrostatic units). Errors in the computations should be reduced by the process
of averaging over many lines and by the fact that the absorption is proportional to
the square root of the line intensity rather than to the intensity itself.

If the line intensities are known, we may compute the generalized absorption
coefficient from (7.18), provided that the half-width a is also known. There is no
direct measurement of the half-width in this particular band. Cornell (38) has
measured the half-width of a considerable number of lines in two bands of water
vapor in the near infrared at 0.9 and 1.1z. He finds that the line width is fairly
constant for the lines in each band and the mean values for the two bands are
o = 0.28 cm~!and o = 0.20 em™, respectively. Since there seems to be no particular
reason why the line width in the rotational band should be essentially different from
these values, a value of a = 0.25 cm™! was taken for the latter. Any errors will be
reduced by the fact that only the square root of a enters into the calculations. It
is not impossible that this figure is appreciably too large, since Matheson (52), by
the indirect method referred to in Section 7, found 0.10 and 0.12 cm™ for the half-
width of lines in two infrared bands of carbon monoxide.

It is evident from Fig. 16 that in the water vapor spectrum the mean distance of
. consecutive lines is much larger than the half-width and consequently we can com-
pute the generalized absorption coefficient from (7.13). The calculations, using
Dennison’s values for the line intensities have been carried out by the author (41),
and some of the results are given in Table 5. The variation of the intensities with

According to a personal communication from Professor Dennison.

-
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temperature was also computed and values for two temperatures,

300° abs. and 220°

abs., are reproduced in Table 5. The values scatter appreciably in each column,
on of the lines in the spectrum. The analysis of the

owing to the irregular distributi

TasLe 5. GENERALiZED ABSORPTION COEFFICIENTS FOR THE RotatioNnat Warer Banp
Interval, cn™ 500 {220 Interval, cm™ La00 {230
75-100 2280 2380 225260 1550 1000
100-125 2430 2410 250275 390 243
125-150 2070 2940 275-300 1130 690
150-175 3690 3340 300-325 283 184
, 175-200 1310 780 325-850 149 62
200-225 2980 2510 350-875 141 43

spectrum extends much farther out to shorter waves and ends at 550 cm™'; absorp-
tion coefficients were also calculated for this region, but it is found that the values
obtained are too small and become gradually more and more inadequate as one goes
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T4g. 17. Transmission in the 6p band of water vapor, after Fowle.
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farther out towards the edge of the band. The calculated values may be tested in-
directly by the emissivity measurements discussed in section 12. Strong (33) has
measured the absorption in the neighborhood of 21 (480 cm™) as a function of the
thickness and has directly verified the validity of the square-root law of absorption
there. The generalized absorption coefficient obtained from these measurements
isl=17.

We go next to the water vapor band at 6s. No similarly exhaustive analysis of
this band is available. The band is very nearly symmetrical about a center located
at 1595 cm—.. The course of the absorption may be obtained from the measure-
ments of Fowle (22). His results are represented in Fig. 17, the ordinates giving the
transmission for two different thicknesses of water vapor which are 0.008 gr/cm?
for upper and 0.082 gr/cm? for the lower curve, the abscissae being wave numbers.
If we assume that the transmission is given by the formulae and curves developed
in Section 7, the geﬁeralized absorption coefficients can be computed from the ob-
served absorption. The band is slightly asymmetric, but averaging over the two
branches we find for the peak absorption approximately [ = 125.

We turn now to the region of great transparency which goes from about 8y to
about 14u. Here we have the extensive recent measurements of Adel and Lamp-
land (16). These measurements were made in the atmosphere with a spectrohelio-
scope, the amount of water vapor overbead being simultaneously determined by the
method of Fowle (22). The latter consists in a measurement of the intensity of
absorption in the ¢-band at 1.12u which has been accurately calibrated by Fowle.
Table 6 gives the results in form of mean transmissions for certain representative

TaBLE 6. PERCENTAGE TRANSMISSIONS IN THE TRANSPARENT REGION. SPECTRORELIOGRAPHIC
QOnservaTioNs (16)

Curve 8-9u 9-10u 10-11g water gir mass

A 47.9 39.8 54.9 4.15 1.6

B 61.8 47.2 69.5 2.14 1.6

C 78.4 Gy 80.6 1.08 1.4

D 84.8 64.0 91.8 0.61 1.8

E 88.2 60.1 93.3 ) 0.32 1.6

F 91.8 61.9 97.2 0.21 1.5
Curve 11-12u 12-13u 13-14u water air mass

A 66.3 59.7 22.1 2.33 1.2

B 70.3 62.9 23.1 2.03 1.3

C 72.9 65.1 187 1.79 2.1

D 87.8 81.1 82.5 0.65 1.8

E 91.3 84.8 32.9 0.41 1.4

F 95.8 942 38.7 0.13 1.4
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runs. The water is in g/cm? and the quantity designated by “air mass” gives the
length of path traversed by the beam in the atmosphere as compared to a vertical
path in a standard atmosphere. The “air mass” is therefore (p/ps)secé where p, is
standard pressure and 0 the zenith distance of the sun.

It is seen from Table 6 that from about 8u to about 13u the absorption varies
little with wave length, with the exception of the interval 9-10u, where the ob-
servations include the absorption produced by the ozone band. Beyond 18u the
carbon dioxide absorption becomes appreciable. The actual observations on which
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the values in the lower part of Table 6 are based are shown in Fig. 18, which is re-
produced from the authors quoted. The letters labeling the spectra in Fig. 18 cor-
respond to those given in the lower half of Table 6.

Strong (83) has plotted the values of Table 6 against the square root of the thick-
ness and has shown that within a reasonable margin they are approximated by a
straight line. On the other hand, if the logarithm of the transmission is plotted
against the thickness itself, a slightly curved line obtains. This indicates that the
absorption is due to individual lines and is of the square-root rather than of the ex-
ponential type. The generalized absorption coefficient, which is nearly constant
throughout the region, is about ! = 0.10. It should be mentioned that Elsasser (40)
had shown previously that there ought to exist, in this part of the spectrum, a con-
tinuous absorption which originates as follows: The lines at the peak of the rota-
tional band are extremely intense; on the other hand at points of the spectrum far
removed from the line center, the absorption coeflicient of a line is by (6.1) ap-
proximately ¥ = Sa/m (v — vo)®. If this expression is summed up over all the strong
lines of the rotational band we obtain a formula for the absorption coefficient out-
side of the band proper, caused by the line wings:

S;a
b= 271’(1/——11,-)2

1

This absorption coefficient, valid at great distance from the lines, changes only very
slowly with » and the absorption is therefore of the continuous type. Adopting
a value of o = 0.25 em™ and carrying out the summation it is found that for
» > 500 cm™! the absorption coefficient may be approximated by the formula

= (7800 — 241)/(y — 200)2

where £ is the temperature in centigrade. The effect is therefore the same as that
of a single very intense spectral line located at 200 ecm™. Fort = 20° C and 1 cm of
precipitable water this formula gives an absorption of 9%, at 9u and of 19% at 12.5..
While these absorptions are smaller than those given in Table 6, they still are of
the order of one half of the latter. On the other hand, as pointed out above, the
half-width of the lines might be appreciably smaller than assumed and this would
correspondingly reduce the absorption. Spectroscopists seem to agree that the ex-
. trapolation of formula (6.1) to large distances from the line center is legitimate and
it must therefore be considered possible that the spectrum in this region is a line
spectrum with a slight continuous background, the lines being preponderant as evi-
denced by the fact that the absorption follows very nearly the square-root law. A
decision might be obtained from the observation of very thick layers, since in this
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case the transmission of a continuum falls to zero more rapidly than that of a line
spectrum (Fig. 13). In practice however it will be sufficient to apply to this region
the transmission function (7.10) valid for the rest of the spectrum.

~ We shall finally discuss the temperature dependence of the absorption coeffi-
cients. Unfortunately very little is known about this subject. The peak of the band
absorption is relatively insensitive to temperature, the main temperature effect
taking place at the edges of the bands. Tt is of course difficult to observe this varia-
tion directly at low temperatures; on the other hand the existing measurements in
steam are of no avail since it is certain that the half-width of the lines in steam is
different from that in air (see Section 8). While the absorption of the rotational
" band, computed from the theoretical line intensities (29), is unreliable beyond about
350 cm™Y, it was thought that the computed ratio of the absorption for two different
temperatures should be far more accurate. In Table 7 the ratio of the generalized

Tapre 7. Compurep TEMPERATURE DEPENDENCE OF GENERALIZED ABSORPTION COEFFICIENTS

Interval, cm™ ls00/laz0 Interval, cm™ 1s00/l220
. 850-375 3.3 450-475 3.8
375-400 4.7 475-500 9.6
400425 4.7 500-525 4.8
425--450 8.5 525-550 3.0

absorption coefficients for 300° abs. and 220° abs. is given (41). Direct measure-
ments of the dependence of the absorption of the water vapor bands upon tempera-
ture are highly desirable, since the knowledge of this variation is of considerable
importance for the analysis of radiative transfer in the upper atmosphere.

* * *

On the basis of the data collected earlier in this section, a curve of the general-
ized a.bsorptioncoeﬂicients is now constructed. The final curve is shown in Fig. 19.
We have several pivotal points which determine the shape of the spectrum in its
main outline. They may be summarized as follows:

1. Peak of the rotational band, I = 3000, computed from line intensities of

Dennison
9. Peak of the 6u band, | = 125, measured by Fowle
3. Region near 21u, I = 17, measured by Strong
4. Region from 8 to 18, [ = 0.10, measured by Adel and Lampland

We get the slope of the rotational band by fitting No. 3 to No. 1; furthermore, the
long wave slope of the 6u band can be obtained by fitting the measurements of
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Fowle together with those of Adel and Lampland. Still, it is felt that our knowl-
edge of the spectrum is inadequate and furthermore not much is known about the
accuracy of the individual measurements involved. A valuable aid for the construe-
tion of the absorption curve comes from the result of the spectroscopic analysis of
the water vapor molecule. It is found that, apart from minor disturbances, the 6u
band should be symmetrical about its center at 1595 cm™, furthermore each of the
two branches of the band, measured from the center outwards, should be similar
to the rotational band measured from » = 0 upwards, in the sense that the absorp-
tion of corresponding points should differ only by a constant factor. On a logarith-
mic diagram like Fig. 19 the contour of the branches of the 64 band should result
from that of the rotational band by a vertical displacement. In reality there are
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Fig. 19. Generalized absorption coefficients for water vapor;




58 HEAT TRANSFER BY INFRARED RADIATION IN ATMOSPHERE

deviations from this simple behavior, and their magnitude may be inferred from the
deviations from perfect symmetry of the absorption contour of Fig. 17.

In view of our inadequate knowledge of the spectrum, rather rigorous simplifi-
cations seemed appropriate, especially since the use of a simple contour greatly
facilitates the subsequent numerical work. Therefore the following rules were
applied: (1) The spectrum to be constructed should have the rigorous character of
symmetry just described. (2) The slope of the band edges should be linear on the
logarithmic diagram of Fig. 19 (this might not be quite true in reality, but greatly
simplifies the calculations). A number of stencils were drawn with slightly different
pand contours and slightly different slopes. From each stencil a spectrum was
drawn by putting the stencil at the proper height for the top of the rotational band
and then shifting it to the 64 band with a proper peak value. Slight deviations of
the peak values from the ones tabulated above were permitted. For each of the
curves thus obtained a number of trial emissivities were computed and the results
compared with the measured emissivity curve (Section 12). This procedure is fairly
critical, and it is found that the actual emissivity curve is fairly well defined by the
spectroscopic data. The curve finally adopted is shown in Fig. 19. In this curve
the peak value of the 6, band isat I = 100, slightly lower than measured by Fowle;
at 21 we have I = 18 as compared to Strong’s I = 17. The slope of the curve at
the latter point however is so steep that a slight deviation of the curve would pro-
duce a considerable change in absorption. This point proved extremely valuable
in determining the general slope of the curve, but a very accurate numerical coin-
cidence might not be required at the present stage of the work. The reduction of
the peak of the 64 band as compared to Fowle’s values, however, appears from more
recent information ! to be unjustified. This will be discussed further in Section 12.

An attempt is also made to take into account the variation of absorption with
temperature. The three curves of Fig. 19 are supposed to correspond approxi-
mately to temperatures of +20°C, —10°C and —40° C. The assignment is
merely tentative, and the calculations were carried through in ordef to get an idea
of the effect of this variation upon the transfer rather than in the belief that these
curves represent the true absorption. The temperature variation at the bottom of
the figure, in the 10u region is entirely fictitious and not founded upon fact or
theory; fortunately this has little practical consequence as only at high tempera-
tures the air contains enough water vapor to produce appreciable absorption in this
region.

"1 The work just described was done about a year earlier,
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It is now possible to compute the quantities which appear on the radiation

chart. The ordinates of the chart are proportional to (4.3):
&y
Qe =[P g
0

Now [ is given by Fig. 19, 7, by Fig. 15, and dfy/dT is obtained from Table 1 and is
plotted in Fig. 1. The results of the integrations are collected in the three parts of
Table 8, each of which correspond to one of the three curves of Fig. 18. The values
are given in per cent, the quantity tabulated being thus 100 Q(u, T)/Q(0, T),
where Q (0, T) = 4cT%. In addition we are interested in the quantity

T ®
JQ(Os T) =6ffb'rf (luw) dv

whose physical significance is that of the transmission of an isothermal layer for
radiation of its own temperature (triangular areas of Fig. 4). This quantity is given

Tasre 8. RapiatioNn CHART Varurs For PURE WATER VAPOR IN Per CENT

A. Upper curve of Fig. 18

Water +40° +20° 0° —20° —40° —60° —80° | fo (—80°)
0.00025 97.2 97.0 96.8 96.5 96.0 95.1 93.5 88.3
0.0004 96.0 95.8 95.6 95.2 94.6 93.6 91.8 84.8
0.0006 94.8 94.7 94.5 94.1 93.3 092.0 90.1 81.7
0.001 92.7 92.6 92.4 92.0 91.1 89.7 87.4 .6
0.0015 90.9 90.8 90.6 90.2 89.1 87.5 85.0 74.2
0.0025 88.2 88.1 88.0 87.4 86.3 84.6 81.8 69.6
0.004 85.2 85.1 85.0 84.5 83.4 81.7 78.6 65.3
0.006 82.8 82.7 82.6 82.0 80.8 8.7 5.5 61.6
0.01 79.0 78.9 78.9 78.4 7.2 76.0 713 56.8
0.015 75.6 YN 5.7 75.5 741 717 67.9 53.0
0.025 71.1 71.3 1.4 71.0 69.7 67.3 63.4 48.3
0.04 66.8 67.0 67.2 66.8 65.4 63.0 59.0 44.0
0.06 62.9 63.2 63.4 63.0 61.6 59.1 54.8 40.2
0.1 57.9 58.2 58.3 57.8 56.4 58.9 49.6 35.8
0.15 58.7 53.9 53.9 53.4 52.1 49.7 45.6 82.1
0.25 48.3 48.3 48.2 47.6 46.3 441 40.4 27.8
0.4 43.83 43.2 42.9 42.1 40.9 38.9 35.4 23.9
0.6 38.9 38.8 38.4 37.6 36.4 34.5 31.8 20.8
1 33.3 33.0 32.5 31.8 30.7 20.0 26.2 17.2
1.5 29.0 28.6 28.1 27.4 26.3 24.8 22.3 14.4
2.5 28.6 23.1 22.5 21.8 21.0 19.6 17.5 11.1
4 18.8 182 - 176 17.0 16.3 15.0 13.3 8.5
6 14.9 14.2 18.6 131 12.4 11.56 10.2 6.3
10 10.3 9.4 8.8 8.3 .78 7.3 6.4 3.9
15 7.3 6.4 5.7 5.2 4.8 4.4 4.0 2.4
25 48 3.9 3.2 2.6 2.2 1.9 1.7 1.8




TaBLE 8. — Continued
B. Middle curve of Fig. 18

Water 4+40°  420° 0° —g0°  —40°  —60°  —80° |fi(—80°)
0.00025 97.6 97.56 97.3 96.9 96.4 95.7 94.6 89.6
0.0004 96.5 96.4 96.8 95.9 95.3 94.4 93.0 86.5
0.0006 95.2 95.1 95.0 94.7 94.1 93.0 91.3 83.6
0.001 93.4 93.3 93.2 92.9 02.1 90.8 88.9 79.8
0.0015 91.8 91.7 91.6 91.3 90.4 88.8 86.7 76.6
0.0025 89.3 89.3 89.2 88.9 87.9 86.3 83.8 2.5
0.004 86.8 86.8 86.8 86.5 85.4 83.7 81.0 68.6
0.008 84.3 84.3 84.4 84.2 83.1 81.3 78.4 65.2
0.01 80.8 80.9 81.0 80.9 79.9 78.0 74.8 60.9
0.015 7.9 78.1 78.3 8.2 ™A 75.1 7.7 57.4
0.025 74.0 74.2 744 74.3 78.2 71.1 67.4 52.9
0.04 70.1 70.3 70.5 70.4 69.3 67.2 63.3 48.6
0.06 66.6 66.9 67.1 66.9 65.7 63.5 59.6 44.8
0.1 62.0 62.4 62.6 62.4 61.0 58.7 54.8 40.1
0.15 57.9 58.3 58.5 58.2 56.9 54.7 50.9 36.4
0.25 52.5 52.8 53.0 52.6 51.4 49.2 45.5 31.7
0.4 47.5 LYW LY 4.2 46.0 44.0 40.4 7.7
0.6 43.0 43.1 43.0 42.4 413 39.4 86.0 24.4
1 37.1 37.1 36.8 36.5 35.4 33.6 30.5 20.5
1.5 32.6 82.6 32.3 31.9 30.8 29.1 26.3 17.5
2.5 7.2 27.0 26.7 26.2 25.2 23.7 21.2 13.9
4 22.2 21.8 21.5 20.9 20.0 18.8 16.6 10.8
6 18.0 17.3 16.8 16.4 15.7 14.8 . 13.0 8.8
10 12.9 12.0 113 10.8 10.3 9.8 8.6 5.5
15 9.4 8.4 7.5 71 6.7 6.3 5.6 37
25 6.0 5.0 4.3 8.8 8.4 8.2 2.8 2.0
C. Lower curve of Fig. 18
Water +40°  +20° 0° —g0°  —40°  —60° —80° | f5(—80%
0.00025 97.9 97.8 9.7 97.3 97.0 96.4 95.5 91.1
0.0004 96.9 96.8 96.7 96.3 95.9 95.2 93.9 88.1
0.0006 95.8 95.7 95.6 956.3 94.8 93.9 92.4 85.4
0.001 94.0 94.0 93.9 938.7 93.1 92.1 90.2 81.8
0.0015 92.4 92.5 92.5 92.3 91.6 90.5 88.3 78.9
0.0025 90.2 90.3 90.3 20.2 89.5 88.1 85.8 75.1
0.004 87.8 88.1 88.2 88.1 87.3 85.8 83.3 1.6
0.006 85.7 85.9 86.0 85.9 85.1 83.5 81.0 8.5
0.01 82.6 82.9 83.1 83.0 82.2 80.6 .9 64.5
0.015 80.0 80.5 80.8 80.6 79.8 78.1 75.2 61.2
0.025 76.4 7.1 .5 ™3 76.4 7477 71.6 56.9
0.04 72.9 73.6 741 74.1 78.1 7.2 68.0 52.9
0.06 69.8 . 70.5 71.0 71.0 69.9 68.0 64.7 49.4
0.1 65.5 66.3 66.9 66.7 65.7 63.6 60.2 44.9
0.15 61.8 62.6 63.0 62.9 61.9 59.8 56.1 40.5
0.25 56.9 57.4 51.7 57.5 56.5 54.5 50.7 36.2
0.4 52.0 52.2 52.2 51.9 51.0 492 45.6 32.2
0.6 47.6 a1 47.5 471 46.1 44.4 41.1 28.8
1 41.9 41.8 415 41.0 40.0 38.3 35.5 24.5
1.5 3.2 37.0 36.8 36.3 35.3 33.6 31.0 21.0
2.5 31.2 31.0 30.8 80.3 29.3 7. 25.5 16.8
4 25.9 25.6 25.2 24.7 23.9 22.4 20.5 18.2
6 21.2 20.7 20.3 19.9 19.2 17.9 16.3 10.4
10 15.5 14.8 14.3 14.0 18.6 12.5 11.1 7.2
15 11.2 10.5 10.0 9.6 9.2 8.5 7.5 49
25 7.1 6.5 5.8 5.2 4.8 4.5 4.1 27
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_ in the last column for —80° C; the values for higher temperatures can be computed
from the tables by numerical integration. Each figure in the three parts of Table 8
represents the result of one integration of the form (4.3). This calculating work
has been carried out with a mechanical device whose construction is described in the
“ appendix. The results obtained involved errors of computation of the order of one
per cent; they were subjected to a twofold smoothing process by plotting them first
as function of the temperature and smoothing and by plotting the corrected values
as function of log u and smoothing again. The figures in the last column could of
course only be smoothed once, with respect to log u. ' ,

Only one more step is necessary to bring the radiation chart to its final form:
this is to account for the radiation of carbon dioxide. It is clear that in principle a
radiation chart functions only for one radiation substance (for several substances
only if their relative proportions remain constant). In the atmosphere the ratio
of water to carbon dioxide is extremely variable. On the other hand, while carbon
dioxide absorbs only within two narrow bands (Fig. 1) the intensity within these
bands is extremely high. In this case the heat transfer within the band becomes
small, as was shown in the beginning of Section 5. The only (though perhaps not
very satisfactory) way in which carbon dioxide is introduced into the radiation
chart without giving rise to additional complications is by the assumption that the
parts of the spectrum occupied by the carbon dioxide band are completely opaque,
i.e., that even very thin layers radiate as black bodies within these bands. For
_ almost all practical problems in the lower atmosphere to which the radiation chart
is appliéd this is a reasonably good approximation. Among the infrared bands of
carbon dioxide that at 15y is vastly preponderant for atmospheric radiation and
was the only one to be taken into account for the construction of the chart. Accord-
ing to spectroscopic analysis it is symmetrical about a center at 668 cm™. From
the observations of Adel and Lampland represented in Fig. 18 we see that the band
cuts off rather sharply at about 13.3p (752 em™'). This being taken as the short
wave edge, the long wave edge comes at 584 cm~!. Most of the curves in Fig. 18
refer to an air mass of 1.3-1.4, while curve C represents an air mass of 2.1. It is
seen that the shift of the band edge to shorter waves owing to the increase of the
length of path is extremely small. Since the radiation chart represents the radiation
of slabs rather than columns, the equivalent length of a column corresponding to the
flux from the atmosphere should be about 1.66 air masses, according to Section 7.
Hence, in assuming a stretch from 584 to 752 cm™ as opaque we get an approxi-
mately correct estimate of the sky radiation in the lower atmosphere contributed

by carbon dioxide.
There is also a certain amount of water vapor radiation within this band. In
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order not to count this amount twice, one should treat the water vapor as if it was
transparent within the band.! For practical reasons, however, the integrations for
pure water vapor whose results appear in Table 8 were simply carried through
without regard to the effect of carbon dioxide. The mean transmission of water
vapor in the band, that is S ¢ (lu) dv (where the integration extends over the width
of the band) was computed separately and is given in Table 9. Since the absorption
coefficients are highly hypothetical in this region, these figures are considered merely
as an intrinsic correction of the chart and not as representative of the true absorp-
tion of water vapor in this part of the spectrum. If now F o, designates the fraction
of the black body flux contained in the limits of the band and 7 the correction given
in Table 9, the final chart ordinates are obtained by subtracting from the figures
of Table 8 the quantity Feo, -

TABLE 9. PERCENTAGE TRANSMISSION OF WaTER VAPOR (81AB8) I THE COj BAND AT 14u

Water a b c Water a b c
0.01 28 100 100 0.6 49 59 70
0.015 o7 99 100 1 39 50 61
0.025 93 g7 100 1.5 31 42 538
0.04 88 94 98 2.5 22 32 43
0.06. 83 91 96 4 13 23 33
0.1 7 85 92 6 8 16 25
0.15 72 80 88 10 3 9 16
0.25 64 73 82 15 1, 5 10
0.4 56 66 76 25 0 2 4

For the construction of the chart a definite set of absorption coefficients must
be chosen, corresponding to a reasonable average temperature of the atmosphere.
The values finally adopted were obtained by interpolating between the figures of
Table 8A and 8B in the ratio 2 : 8. If the figures of these tables correspond to
temperatures of +20°C and —10°C, the chart would be correct at about 4-8° C.
It appeared, however, after the numerical work had been carried out, that the
values used are slightly too low (see Section 12) and therefore the chart would be
correct at appreciably lower temperatures. A final decision should be made by
comparison with further observations.

In the actual radiation chart the unit flux chosen is one calorie per cm? per
three hours. The abscissae and ordinates are given by formula (4.6). Putting there

a = 12.50c we have for the actual abscissae and ordinates of the chart ,

/
z = 1250612, y = @/25¢T = 0.160 T2 Q (u, T)/Q (0, T) % IRy
tal

1 See, however, the more complete treatment of this overlapping by Hottel and Mangelsdorf (48).
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~ The chart ordinates are given in Table 10. The triangular areas of Fig. 4 which
represent the transmission of isothermal layers for radiation of their own tempera-
ture are now obtained by numerical integration. They are given in Table 11.

TasLE 10. ORDINATES OF THE RADIATION CHART

Water +440° +80° 420° +10° 0° —10° —20° —80° —40° —50° —60° —70° —80°
black 3188 2041 Q750 2566 388 2216 2051 1892 1740 1594 1454 1321 1194
CO, 2708 2518 2332 2155 1989 1828 1676 1533 1399 1273 1156 1046 943
0.00025 2627 2438 2255 2081 1917 1760 1608 1466 1332 1206 1088 975 870
0.0006 2551 2371 2192 2024 1862 1709 1559 1419 1287 1162 1045 935 831
0.001 2480 2312 2187 1970 1815 1664 1520 1381 1251 1128 1012 903 800
0.0025 2350 2182 2019 1863 1714 1569 1430 1296 1171 1052 941 836 785
0.004 2266 2103 1942 1788 1648 1507 1374 1247 1124 1009 900 798 700
0.006 2187 2029 1878 1727 1590 1456 1825 1200 1080 967 861 759 665
0.01 2078 1923 1776 1687 1506 1378 1255 1187 1023 918 808 712 619
0.015 1985 1843 1702 1568 1443 1819 1201 1088 978 872 771 675 584
0.025 1863 1790 1600 1475 1357 1240 1128 1019 915 814 719 628 539
0.04 1750 1625 1502 1886 1277 1167 1081 957 859 764 678 585 499
0.06 1651 1536 1420 1310 1207 1102 1002 904 808 716 620 546 461
0.1 1528 1417 1818 1211 1114 1017 922 829 740 655 574 495 417
0.15 1416 1318 1221 1126 1033 941 853 767 684 604 530 457 882
0.25 1279 1185 1096 1008 927 844 764 684 610 539 469 402 337
0.4 1154 1060 987 908 831 753 679 609 532 477 416 356 296
0.6 1043 970 892 819 748 679 611 547 485 428 873 818 264
1 907 838 7Y 708 645 587 528 474 421 869 320 271 225
1.5 804 743 684 626 572 518 467 417 869 824 281 239 198
2.5 678 624 573 521 476 431 888 347 808 269 232 197 163
4 561 513 468 432 891 855 318 283 252 220 180 161 133
6 458 415 3878 842 812 281 254 227 201 177 153 181 107
10 331 €94 963 237 212 189 170 152 184 119 104 90 75
15 g4y 216 188 164 145 128 114 101 89 78 68 59 50
25 164 139 116 98 84 73 64 53 45 38 33 29 24

10. Spectra of Other Atmospheric Gases; Absorption of Sunlight

Next to water vapor the most important agent for radiative heat transfer in the
atmosphere is carbon dioxide. It has three absorption bands in the far infrared
region, two very intense bands at about 4x and 15u and a very faint one near 10u.
The band at 4u is just at the upper end of the black body curve for ordinary tempera-
tures and in the computations for the radiation chart it has been neglected. 'This
might give rise to slight errors for temperatures above about 10°C. The most im-
portant band is that near 16u; according to the spectroscopic analysis (25) it is
symmetrical about a center at 668 cm™. The manner in which it was introduced
into the radiation chart has been discussed in the previous chapter. The fraction of
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the black body radiation taken up by this band is appreciable; at ordinary tempera-

. tures it is of the order of 189, for a radiating layer of the thickness of the atmos-
phere. As we go upwards in the atmosphere we must finally reach a height where
this radiation flows out to space without compensation by downward radiation.
This takes place in the stratosphere, and it is found that the radiative effects of
carbon dioxide in the stratosphere become as strong as or stronger than those of
water vapor. '

TanLE 11. AgEss oF THE RaDiaTiON CHART

Water | +40° +380° +20° +10° 0° —10° —20° —30° —40° —50° —60° —~70° —80°

black 1411 124.2 1086 94.5 819 705 604 5l4 485 865 3804 250 205
CO, 1174 102.6 89.8 77.4 66.8 574 49.1 418 354 298 249 207 171
0.00025 111.0 967 838 1724 622 531 451 38381 320 267 221 181 148
0.0006 106.8 929 804 692 59.8 505 427 3860 3800 249 205 167 135

0.001 108.5 899 T4 669 572 486 41.1 845 287 2397 194 158 127
0.0025 96.6 83.7 722 619 528 447 376 314 260 218 173 189 111
0.004 92.4 80.0 689 59.1 503 425 357 297 245 200 162 130 102
0.006 88.6 7647 66.0 564 480 405 839 281 231 188 152 121 9.5
0.01 83.4 721 620 53.0 449 378 316 261 <214 173 189 110 8.6
0.015 70.5 687 59.0 503 426 858 299 246 201 162 129 102 7.9
0.025 742 641 549 468 396 332 275 226 184 148 117 9.1 7.0
0.04 694 59.8 51.3 43.6 368 308 255 209 170 13.6 107 8.3 6.3
0.06 65.2 56.2 48.1 40.8 344 287 237 194 156 124 9.7 7.5 5.7
01 59.7 514 439 372 813 26.0 214 174 140 111 8.6 6.6 4.9
0.15 551 47.4 405 3843 287 239 19.6 159 127 100 7.8 59 44
0.25 499 422 360 304 255 211 173 140 112 8.8 6.7 51 8%
0.4 439 3876 3820 270 25 18.6 152 1238 9.8 7.6 5.8 4.4 3.2
0.6 89,5 3838 287 241 201 166 185 109 8.6 6.7 5.1 3.8 2.3
1 340 29.1 247 208 173 143 116 94 7.4 5.7 4.4 8.2 2.3
1.5 30.0 257 218 183 152 125 102 82 65 5.0 3.8 2.8 2.0
2.5 250 213 181 152 126 104 84 68 53 4.1 3.1 2.3 1.6
4 20.5 175 148 124 103 85 68 55 44 3.4 2.5 1.9 1.3
6 165 140 11.9 99 83 68 55 44 35 7 2.1 1.5 11
10 114 9.6 8.1 67 56 46 388 80 2.4 1.9 1.4 1.0 0.7
15 79 66 5.5 45 387 3.1 2.5 2.0 1.6 1.2 0.5 0.7 0.5
25 4.6 3.8 381 2.5 206 16 13 1.0 0.8 0.7 0.5 0.4 0.3

If we want to compute the radiative transfer by carbon dioxide, a graphical
method presents itself naturally, similar to that for water vapor. The procedure is
comparatively simple due to the fact that the radiation is confined to a narrow band,
and one may replace the black body flux by its value at the band center. The for-
mulae of Sections 3 and 4 are then replaced by much simpler expressions. We shall
however not enter into the mathematical details. The total emission of layers of
carbon dioxide has been computed by several writers. This quantity can also be
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measured directly with far less difficulty than for water vapor and we shall come
back to this topic in Section 12 where numerical values will be given.

A very faint absorption band of carbon dioxide is found near 10y; it has been
resolved and identified by Barker and Adel (20). According to Schnaidt (55) the
contribution of this band is about 0.4% of the black body radiation so that it is
negligible except for very accurate investigations.

The half-width of the lines in carbon dioxide is not known; however Rubens
and Ladenburg (80) have shown that the broadening effect of air upon carbon
dioxide is almost exactly equal to that of carbon dioxide upon itself, a fact which
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Fra. 20. Transmission of ozone, after Hettner, Pohlmann, and Schuhmacher.

permits the direct application to the atmosphere of measurements made in pure
carbon dioxide. The measurements of Falckenberg (45) show that under atmos-
- pheric pressure the absorption follows the square-root law for moderately thick
layers so that the bands are composed of distinct lines. The latter fact is in accord-
ance with direct spectroscopic investigation (25). The pressure dependence, (47),
(58) of the absorption seems to be the same as for water vapor; hence formula
(5.3) should apply to carbon dioxide.

Next in importance for infrared atmospheric radiation is ozone. Its infrared
spectrum has been measured by Hettner, Pohlmann, and Schuhmacher (24).
" Fig. 20 shows the transmission curve which is obtained from a column of 30 cm of
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practically pure ozone under a pressure of 160 mm of mercury. The band near
1000 cm— falls into the region where water vapor is highly transparent, and may
therefore be observed in the atmosphere itself; it has been studied by Adel and
Lampland (16) and, very extensively, by Strong (82). The absorption curve of
Fig. 20 corresponds to a much larger amount of ozone than is ever found in the
atmosphere. The peak transmission at the 10 band in Fig. 20 is about 5% while
in the measurements of Adel and Lampland it is about 409,. If we assume that
formula (7.10) applies for the transmission function, we find from Table 4 that
atmospheric ozone corresponds to 2 column of about one tenth the length of that

s

in Fig. 20. This is however an “equivalent” column and the true amount can be
different, owing to the fact that the line-broadening effect of ozone upon itself may
be different from that of air upon ozone.

There is another band visible in Fig. 20 which has its center at about 710 em™!
and coincides almost completely with the 154 carbon dioxide band whose center
is at 668 cm—!. The peak transmission is about 349, and the peak transmission for
one tenth of the column would come to about 77%- This band must play a certain
role in the heat transfer of the stratosphere, where it codperates with the carbon
dioxide band in producing a radiative flux in this part of the spectrum, but owing
to its overall weakness which is indicated by the estimate just made it should be of
but minor importance for the radiative heat balance. :

Strong (82) has shown that for air pressures appreciably lower than one atmos-
phere the absorption of the 10u band follows the square-root law so that the band
consists of separate lines. Strong and Watanabe (57) have demonstrated that under
these conditions the pressure dependence of the absorption follows a law similar to
that of water vapor.

While ozone is of course of great importance for the heat balance of the strato-
sphere, owing to its absorption of sunlight, it is of minor significance for the radia-
tive balance of the lower atmosphere, especially since the effective temperature of
the ozone layer is in general much smaller than that of the ground and of the lower
atmosphere. For average temperatures prevailing in the stratosphere the flux due
to the 104 band of ozone is slightly less than 19, of the black body flux of these
temperatures. The contribution of ozone to the incoming sky radiation is there-
fore a‘fraction of 1% of the black body flux corresponding to the ground tempera-
ture in middle latitudes.

A number of minor bands in the far infrared absorption spectrum of the sun
have recently become known through the investigations of Adel. A narrow but
distinct absorption band is located at 7.8 and is due to the pentoxide of nitrogen

(17). One might presume that this gas is located at the very top of the atmosphere
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where oxygen is dissociated by the ultraviolet rays of the sun. For the atmospheric
heat transfer this band is probably negligible, unless the temperatures of the layer
where it originates should come out to be exceedingly high. A very faint band, also
due to an oxide of nitrogen, is found at 12.6u (18). It may be recognized in Fig. 18.
In very moist air Adel (19) has been able to identify and to resolve a band due to
heavy water (HDO) located at 7.12u and corresponding to the 6u band of ordinary
water vapor.

A word might be said about the possibility of infrared emission and absorption
by the main constituents of the atmosphere, nitrogen and oxygen. The optical
thickness of these gases in the atmosphere is so large that it seems unjustified to
infer from their transparency in common laboratory tests the complete absence of
infrared emission and absorption of a dry atmosphere. The absorption or emission,
even of the whole atmosphere, must in any case be very small, and in the regions of
the spectrum where water vapor and carbon dioxide radiate appreciably the super-
position of a very small absorption of the air would leave the existing radiation bal-
ance practically unaltered. Such an absorption should show up in the solar observa-
tions of Adel and Lampland in the 10 region and give rise to a residual absorption
if the obtained curves are extrapolated to zero moisture content. There appears to
be no such effect of any appreciable magnitude and it seems safe to assume in the
theory of radiative transfer that dry air is completely transparent.

* * ®

The depletion of solar radiation by the atmosphere by absorption and scattering
is an important problem of meteorology; although it does not belong to our subject
proper, the absorption of solar radiation by atmospheric gases, in practice almost
exclusively by water vapor, will be briefly discussed here. Our quantitative knowl-
edge is due to Fowle (22), whose laboratory investigations in this field will remain a
classic of the experimental art. The light of a Nernst glower was sent through a
tube of about 60 meters length and then into the slit of an infrared spectroscope.
By means of mirrors the light could be passed four times through the tube and an
optical path of about 240 meters was thus achieved, giving, with the amount of
water vapor present under laboratory conditions, sufficient absorption even in the
weaker bands to obtain the transmission contours of the bands. The details of the
work cannot be discussed here. The final results of Fowle have been put in a form
convenient for numerical computation by Miigge and Méller (83), who showed that
within the range of 0.5 cm to 8 cm of precipitable water which Fowle’s measurements
cover, the latter can be represented by the formula

a(u) = 0.172 u**® (10.1)
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where a is the solar energy absorbed in calories per cm? per minute and » the column
of precipitable water in gr/em’ Formula (10.1) fits Fowle’s observations every-
where within 19 or less, but should not be extrapolated far beyond the interval
for which it is derived. If the zenith distance of the sun is 8, and if now u designates
the amount of precipitable water in a vertical column, we must write u secf in (10.1)
in order to use this formula in the atmosphere. The amount absorbed in a thin
Jayer of the atmosphere of vertical thickness du is then seen to be

d a(u secf)

du d (u secl)

= 0.0521 (u sec8)™0%7 du

and this must be equal to the increase of heat content of the layer ¢, AT dmm where
dm is the mass of air in the layer per cm?. We have du/dm = w/1000 where w is
the specific humidity; if we express the heating in degrees centigrade per 8 hours
we have numerically (with an accuracy which might suffice for most practical

purposes)
(AT)s hours = 0.039 (u sec) "™ (10.2)

where u is the total precipitable water above the considered level. The height of
the sun does not of course remain constant, and (10.2) must bé integrated over the
course of the sun’s height during the day in order to obtain the total heating (93).
In Fig. 21 is plotted Fowle’s curve (10.1), together with two other curves which
represent the absorption of atmospheric water vapor as determined directly as an
average from a large number of solar radiation observations. The two lower curves
are due to Kimball (76) and Hoelper (75), the diagram being taken from Hoelper’s
paper. According to the latter the two curves are practically in agreement within
the observational errors. The lowest curve runs at about 809, of Fowle’s values
while the curve of Kimball is nearer to 909, for small moistures. Fowle himself has
estimated the pressure correction of his transmission curve from the measurements
of E. v. Bahr (35) and finds that for typical atmospheres it reduces the moisture
values to 89-90%, of the uncorrected amounts. The pressure dependence, as we
know, is very nearly of the square-root type discussed in Section 7. In addition,
all the bands will become narrower with lower temperature in the same way as in-
dicated in Fig. 16 for two of them. This will lead to a further reduction of the ob-
served absorption and it might appear that in this way the difference between
Fowle’s curve and the two lower curves of Fig. 21 reduces to an almost insignificant
amount. The loss of radiation due to scattering in the atmosphere which is very
large in the blue and violet part of the spectrum is almost negligible in the red and
completely negligible in the infrared (unless of course dust or haze is present). We
might conclude that in a clear atmosphere our formula (10.2) with a suitable pres-
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sure correction factor+/p/p, for each level and, if a high degree of accuracy is de-
sired, with a temperature correction factor which might vary between, say, 0.95
and 1, should give quite satisfactory values for heating of the atmosphere by solar
radiation. )

It was noted by E. v. Bahr (35) that all the infrared bands of water vapor show
nearly the same pressure dependence. Until more accurate measurements are
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Fia. 21. Absorption of sunlight by the atmosphere, after Hoelper.
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available this statement may be taken with a certain reserve so far as the water
vapor bands in the visible and the very near infrared are concerned. It may be
inferred from general considerations of quantum theory that, whatever the physical
explanation of the squai'e—root law of line broadening may be, it must eventually
yield to a law of broadening which is linear with pressure when we go to absorption
bands of shorter and shorter wave length. Just where this transition may take
place is of course difficult to say. Such an effect would tend to increase the pressure
correction factor of the total absorption, but this increase would presumably be
slight. '



PART III. THE MEASUREMENT OF ATMOSPHERIC EMISSION

11. Instruments for Atmospheric Radiation Measurements

If 5 horizontal black plate is exposed to the sky at night it will cool. This effect
is the basis of numerous meteorological phenomena of great practical significance,
such as the formation of inversions, of ground fogs, nocturnal frosts, etc. Sky
radiation measurements have therefore early received attention. It is obvious that
the heat loss of the black plate is equal to the defect of the incoming sky radiation
relative to the black body radiation emitted towards the sky by the black plate it-
self. We shall briefly discuss the various instruments used for the purpose of such
measurements and then say a few words about spectroscopic measurements of sky
radiation.

The non-spectroscopic instruments operating with a black receiving surface are
of three types: (1) the open instrument with a horizontal black surface receiving
radiation from the whole sky; (2) the box-type instrument in which the receiver is
placed at the bottom of a box with a hole at the top; (3) the telescope-type instru-
ment in which the receiver is located in the focal plane of a concave mirror. The
last two types have a mechanical suspension which permits setting of the instru-
ment at any desired angle of elevation. All three types have been used extensively
for sky radiation observations. Apart from some primitive instruments using the
blackened bulb of a thermometer and having a low accuracy, the temperature is
measured by means of thermoelectric elements. In the open-type instruments the
fall of the temperature of the black plate s compensated by artificial heating in order
to eliminate the influence of the wind. This is done electrically, and the heat flow
is determined by measuring the heating current after the instrument has reached
temperature equilibrium with the surrounding air. In place of thermocouples,
resistance thermometers have occasionally been used.

The construction of a radiation instrument would be comparatively simple if
the receiver could be completely enclosed rather than exposed to the atmospheric
air. Extensive investigations of infrared spectra (2) show however that there is
no solid which is completely transparent throughout the far infrared region of the
spectrum. In order to obtain accurate results, windows are avoided, and conse-
quently the receiving surface finds itself in a space which communicates directly
with the atmosphere. The receiver should be constructed so that it is insensitive to
short-period local fluctuations of the temperature due to adiabatic compression or
expansion of the surrounding air. This is achieved either by giving the receiver a
comparatively large mass, or by using a compensation method in which the hot
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and cold junctions of the thermocouples are attached to two equal plates, one plate
being blackened or exposed to the sky and the compensating plate being made re-
flecting or shielded from the sky. 4

One of the most important features of the receiver is its “blackness.” We saw
in Section 1 that a black body will absorb any radiation falling upon it and will
emit radiation of its own temperature according to Planck’s law. Since all actual
surfaces show a certain regular or diffuse reflection, no surface is completely black.
For laboratory purposes a black body is realized by means of an opening in a wall of
a closed vessel, preferably of conical form (Fig. 22), which is blackened at the inside
and kept at a constant temperature. It isseen that a beam of radiation which enters
the diaphragm has only a very small probability of leaving the vessel again because
of reflection or scattering; in this way the ideal black body is closely approached.

Fia. 22. Black body.

An efficient method of producing a black body is to use a fluffy substance which
at the same time has a high coefficient of absorption throughout the spectrum. This
is the reason why a cloud or a fog is black in the far infrared even if it is compara-
tively thin. According to Falckenberg (44) snow is 99.5%, black in the far infrared,
that is absolutely black within the errors of his measurement. The powdery sub-
stances such as lamp-black, platinum black, zinc black, ete., which are applied to
surfaces in order to blacken them do not show an equally high absorption. They are
usually between 92%:and 969, black. Two properties are important in practice.
First, the coat should have approximately the same power of absorption for all
wave lengths involved, and secondly, it should be a good conductor of heat. If the
latter condition is not fulfilled, a temperature gradient will be established between
the body of the receiver where the temperature is measured and the actual radiating
surface which determines the temperature of the outgoing radiation. This reduces
the sensitivity of the receiver in the case of the box-type instrument where the in-
cident radiation and the change in temperature produced are very small. In open-
air instruments with compensatory heating the wind influences the temperature of
the radiating black surface, and if a temperature gradient develops in the blacken-
" ing coat, the body of the receiver will in equilibrium be at a higher temperature than
the surrounding air. This seems to be a frequent source of errors. For the technical
- procedure of blackening a surface we refer to the comprehensive treatises (6), (13).
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The Angstrom instrument, called pyrgeometer, is the simplest open-surface in-
strument. It consists essentially of four thin strips of manganin which are exactly
equal and of which two are blackened while the two others are kept reflecting. The
strips have a surface of 2 X 0.3 cm each and during the observations they are set
in the direction of the wind. The junctions of the thermoelements are alternately
tastened to the black and the reflecting strips and the former are electrically heated
until all strips are at the same temperature. In spite of the compensation the wind
influence upon this instrument seems to be considerable. Fig. 23 shows measure-
ments of Siissenberger (122) who compared the readings of the ﬁngstrﬁm instru-
ment with those of an instrument of the telescope type. The wind velocity during
these observations did not surpass 5 m/s. In windy weather the readings of the

z&ngstrb'm instrument are consistently too low by large percentages. We mention
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T 23. Comparison of two instruments.

this fact here because the Angstrém instrument has been widely used for sky ob-
servations. It seems probable that this effect is due to the existence of a tempera-
ture gradient across the coat of blackening in the manner outlined.
Albrecht has devised some ingenious compensating methods for the elimination
of the wind influence. In a first instrument (95), two equal and equally exposed
black plates are used, one of which carries a 3-junction and the other a 6-junction
thermopile. The cold junctions of the thermoelements of both plates are reflecting

and are exposed to the air in an enclosure underneath the plates which is ventilated
" but protected against radiation. The thermopiles are in series with opposite polari-
ties. The plate with 6 junctions is heated until the thermo-current vanishes (if
there is more incoming than outgoing radiation the other plate is heated). The
radiative heat loss per plate is now equal to twice the energy supplied by the heat-
ing current. This instrument is based on the assumption that the heat conveyed
to each plate by the wind is proportional to the difference between the air tempera-
ture and the measured temperature of the plate. Another instrument (95a) of
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Albrecht is based on the same assumption. It uses one plate which in short succes-
sion is heated by two different currents producing the amounts of heat H; and H,,
say. If R is the radiative heat loss, we have '

H;—R=C't1 and Hz"‘R=C‘t2

where ; and £, are the temperature differences between the plate and the air, C
being a coefficient which depends on the wind velocity but is assumed to remain
constant during the measurements. We find

R= (Hyt; — Hity)/(tr — 1)

In practice a ratio Hi/H, = 0.4 is proposed. This instrument was tested in a wind
tunnel with velocities up to 8 m/s and the proportionality of heat transfer with
temperature was verified. In place of one plate, two equal plates may be used
which are permanently heated with two different currents while the galvanometer
is periodically switched from one to the other plate. In this form the instrument
was used by Albrecht for recording purposes. ‘

Of 3 somewhat similar but in many respects more refined type than the Ang-
strém instrument is the instrument of Aldrich (96) which is called the Melikeron
(honeycomb). Fig. 24 shows its design. Here the black-body principle is realized
in an open-surface instrument. The essential part is a honeycomb-like structure,
(a) built of individual metallic strips of which one is shown in the lower left-band
corner of the figure. The strips are made of a special alloy and are 1.2 cm wide and
0.05 min thick. The individual strips are insulated from each other by a shellac
cover and are electrically in series so that the compensating current which passes
through them heats them homogeneously. A 4-junction thermoelement is used,
the hot junctions being fastened to the strips and the cold junctions to the under
side of the glass plates (¢) which hold the honeycomb in place. The lower two thirds
of the width of each strip are blackened, the upper third being left reflecting. In
this way only the part of the honeycomb which is fairly well enclosed and may
therefore be assumed to have a homogeneous and well-defined temperature, absorbs
and emits radiation. Rays which arrive almost vertically and pass through the
meshes of the honeycomb are reflected back into the latter by a slanting mirror (b).
A hemispherical cover (d), blackened at the inside, is provided which can be flapped
over the instrument. (c) is a removable glass hemisphere which is used only for
solar radiation measurements. In the Melikeron the influence of the wind upon the
temperature is greatly diminished since the essential radiating part of the instru-
ment is well enclosed and it should therefore be much nearer to internal thermal
equilibrium than a level plate which is heated and exposed to air. This instrument
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has been extensively used by the United States Weather Bureau for nocturnal
radiation measurements (see for instance (123) ). When the various open surface
instruments are compared with each other it seems to the writer that the melikeron
combines a maximum of desirable features with a simple principle of operation and
relatively inexpensive auxiliary apparatus. *

5

Fra. 24. The Aldrich radiation instrument (Melikeron),

The box-type radiation instrument was extensively used by Dines (104), Ramana-
than and Desai (116), and others. Dines’s instrument consisted of a 120-element
thermopile located at the bottom of a tubular vessel of 60 cm length at the top of
which an opening of 10 cm diameter was provided. The instrument was placed
underground and surrounded by tanks of water in order to insure constancy of
temperature. Measurements were made at various angles of elevation.

Instruments of the telescope type have been constructed by Dubois (105), the
author (43), and others. In Dubois’s instrument a sensitive thermopile was located
at the focus of a concave mirror. These instruments are fairly well shielded from the
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wind but they require galvanometers of a much higher degree of sensitivity than
the open-air instruments and they are therefore better suited for laboratory measure-
ments than for field use. ‘

We may mention here that ./o&ngstriim has made radiation measurements in a
free balloon (98). An ordinary open-surface instrument was used, and in order to
eliminate the radiation from the balloon itself, one half of the sky was screened off
by a hemispherical black screen. The instrument could be pointed upwards and
downwards so that both the upward and downward flux could be measured.

A word might be said in passing about the calibration of black-body radiometers.
Usually these instruments are calibrated by putting them opposite a black body of
* well-defined size and of known temperature, higher or lower than that of the instru-
ment itself. It may be seen from Fig. 27 of Section 12 that the infrared emissivity
of ordinary air is appreciable even in thin layers; a column of 1 meter of moist air
under average laboratory conditions has an emissivity of 7-10%, of the black body -
radiation. Calibrations are therefore either carried out in completely dry air or a
correction must be applied for the absorption and thermal emission of the air be-
tween the standard black body and the instrument.

Automatic recording devices for sky radiation have been constructed by a num-
ber of meteorologists (95a), (99), (108). Among other instruments we mention an
apparatus of Falckenberg for the measurement of the infrared absorption of objects
of small heat capacity (44). The measurement of leaves showed that they were 96%
black, the same as water. (

We know of only one attempt at observing the infrared emission of the nocturnal
sky directly with a spectroscope, by Deveaux (21). The radiative intensity avail-
able is minute and the observations had to be made with a very wide slit so that
not much detail could be secured. Deveaux indicates that he was able to identify

‘the major features of the water vapor spectrum; the strong band at 6, and the region
of low emission from 8 to 13u; he also could distinguish clearly the ozone emission
at 9. An extensive study of infrared atmospheric radiation by an entirely different
method has been made by Strong (33). His instrument (81) uses the method of
residual rays: It is known that practically all crystals have bands of selective reflec-
tion in the far infrared (2). These bands are of various widths and in general com-
parable in extension and shape with the infrared absorption bands of gases (except
that they have no line structure). At the peak of these bands the reflectivity of the
crystal is usually very high. If a beam of infrared radiation undergoes several suc-
cessive reflections at crystals of the same kind, a spectral selection of radiation takes
place (Fig. 25). Indeed, if r is the reﬂect1v1ty for any given frequency, the incident
radiation I of this frequency will after n reflections be reduced to Ir"; if = is not too
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small this will be small unless 7 is close to unity. In this way an originally rather
broad and diffuse band can be appreciably sharpened. In Strong’s instrument up
to five successive reflections can be produced. A number of bands in various parts
of the spectrum are obtained by a selection of suitable crystals. The reflected in-
tensity is measured with a vacuum thermopile. We have already made ample use
in the preceding chapters of some of the results obtained with this instrument. The
residual rays of apophyllite are located near 9u and coincide with the ozone band of
 this region. Measurements of atmospheric ozone both in solar absorption and in
emission have been made with the instrument (82).

1 refl.

5 reft.

Fic. 25. Residual rays.

There is of course the vast field of solar spectroscopy which for the far infrared
has been developed in recent years by Adel (16)~(19). We have had numerous
opportunities already to make use of the results of these investigations. The tech-
nique is identical with that of ordinary infrared spectroscopy and its discussion
is outside the scope of the present study.

12. Measurement of Isothermal Emissivities

The measurement of sky radiation by means of black body instruments repre-
sents the most straightforward, but neither the most simple nor the most accurate,
test of the properties of atmospheric radiation. Indeed, the atmosphere is so com-
plex in its constitution and in the variety of occurring temperature and moisture
distributions that any attempt at connecting the spectroscopic properties of radiat-
ing gases directly with the emissive power of the atmosphere is subject to serious
difficulties. The method to be described now affords a laboratory or semi-laboratory
test of the heat transfer properties of the atmosphere. The method seems to have
been invented by Arrhenius (34a) in connection with his well-known suggestion that
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the ice ages might be due to a change in the radiative properties of the atmosphere
caused by a change in its carbon dioxide content, an idea which has long since been
abandoned as an untenable speculation. In more recent years the method has been
applied by Hottel and Mangelsdorf (48) and by some others to the measurement of
the infrared emission of hot furnace gases. The principle is very simple: the total
infrared radiation emerging from a column of gas kept at a constant temperature
is measured by means of a black body receiver; in order to shield off all radiation
which might come from beyond the column of radiating gas, a black body (Fig. 22)
of very low temperature is provided at the far end of the column. Arrhenius used
a black body at —80° C while more recent investigators used a black body chilled
by liquid air. In the latter case the radiation emerging from this background is
about 19, of the black body radiation at room temperature and gives rise to only
a very small correction.

We shall first briefly outline the relation of this method to the theoretical con-
ceptions given in Part I which led up to the construction of the radiation chart. We
define the emissivity ¢; of an isothermal column of radiating gas as the ratio of the
total radiation emitted by the column longitudinally to the total black body radia-
tion at the temperature of the column. If again r; designates the transmission of the
column for radiation of a given wave length and if I, is the black body intensity at
that particular wave length, we know from Kirchhoff’s law (1.3) that the emission
of the column is Iy (1 — ;). The total black body radiation is (¢/7)T* by (1.7).
Hence the emissivity of the isothermal column

1 o0
g, T) = W'J}b (1= (w)]ldv

If ¢ is known, the emissivity ¢, of a slab of radiating matter may be calculated by
(8.8) and is

1
e (u, T) =6fe[ (usec 8, T) d (sin? 6)

Now e has a very simple connection with the variables @ which form the ordinates of
the radiation chart. This relation is derived from (4.8) and (4.7):

Q0. T) — Q)= 4 Les (w, T) o]

The triangular areas on the radiation chart which are tabulated in Table 11 are
equal to

T .
JQ(M,T)(ZT—‘:O'T"‘EI - el(u3 T)]
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Hence all the construction elements of the radiation chart may be obtained from the
emissivities ¢; of isothermal columns by simple mathematical operations. Since
¢ is the quantity measured in the experiments just referred to, we have here a
means of checking directly the quantities which determine the radiative heat
transfer.

A slight generalization of the Arrhenius experiment is achieved if, instead of
protecting one face of the radiating column from all incident radiation, we cover
it with a black body of the temperature T, say. If the other face of the column is
bounded by a black plate of the same temperature T as the gas, the net loss or gain
of heat of the latter plate is found to be

(o/7) (Tt — T + (o/m) (T4 (u, T) — T e (w, Th)]

In such experiments one may take for T, either a higher or a lower temperature
than T. Expressions of this type also have a simple geometrical interpretation on
the radiation chart.

We see from these considerations that the radiation chart is completely deter-
mined if the emissivities of isothermal columns are known for all thicknesses u and
for all temperatures T. If the emissivities have been measured for both water vapor
and carbon dioxide and for the range of thicknesses and temperatures obtaining
in the atmosphere, the transfer problem is completely solved with an accuracy
exactly equal to that of these measurements — apart from a fourfold correction.
The correction terms involve, according to Part II of this paper: (1) the variability
of the absorption coefficients with temperature; (2) the effect of pressure upon the
absorption coefficients; (3) the overlapping of the water vapor and carbon dioxide
radiation bands; (4) the presence of minor radiators, such as ozone in the strato-
sphere and haze and dust in the troposphere. N

We shall first discuss the measurements on carbon dioxide, which are of a com-
paratively simple character. The results are shown in Figs. 26 and 27. A great
simplification is achieved by the fact, discovered by Rubens and Ladenburg (54),
that the pressure effect upon the spectral lines of carbon dioxide is very nearly the
same whether the pressure is exerted by air or by carbon dioxide itself. In other
words a column of pure carbon dioxide under the pressure of one atmosphere will
have the same emissive properties as the same amount of carbon dioxide spread over
a long column of dry air under atmospheric pressure. In the experiments of Rubens
and Ladenburg tubes filled with carbon dioxide were used closed by windows trans-
parent for the carbon dioxide band; the reflectivity of the windows was determined
separately and corrections for it were applied. In the experiments of Hottel and
Mangelsdorf (48) and of Falckenberg (45) the use of windows was circumvented
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by methods which we shall not discuss here. The point in the figures attributed to
Hertz was computed (48) from the spectroscopic data of the latter (47).

In Fig. 26 the emissivity in per cent is plotted against the square root of the
thickness, and in Fig. 27 against the logarithm of the thickness. The unit thickness
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Fic. 26. Emissivity curve of carbon dioxide.

has been taken as one meter of dry air which contains 0.03%, of carbon dioxide by
volume.! We see that for small thicknesses, up to about 50 m of air, the emission
is very nearly a linear function of the square root. For longer columns the emission

1 F. A. Paneth, The Chemical Compbsition of the Atmosphere, Quart. Journ. Roy. Met. Soe. 63:
433, 1937.
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increases much less rapidly and is nearly a linear function of the logarithm of the
thickness. In Fig. 27 a curve which fits the observations closely has been drawn
and also a straight line. If ¢; designates now the emissivity in per cent, the straight
line is

e =6.8loguu—54
We can readily compute from this the emissivity of a slab if we assume that, as
shown in Section 7, a slab of thickness u is nearly equivalent to a column of length
1.66 . We obtain

¢ = 6.8 logio u — 3.9

The fact that the emissivity increases first according to a square-root law and
Jater according to a logarithmic law might require some comment. In an absorption
band there is a central region where the intensity is fairly constant over a certain
interval of the spectrum, while at both sides of the center the intensity decreases

_very rapidly (about exponentially). This may for instance be seen for the water
vapor bands in Fig. 19. As we have seen in Section 7 the absorption (or emission)
of a line spectrum follows in any given part of the spectrum a square-root law until
in that particular region the absorption or emission is fairly complete. Therefore a
square-root law is found at the beginning of the emissivity curve until the absorp-
tion or emission is nearly complete in the central part of the band. The decrease of
intensity at the edges of the band is extremely steep as, for the carbon dioxide band
at 14, may be seen from the absorption curves of Fig. 18. As the emitting column
grows still thicker, additional emission is due to the gradual appearance of progres-
sively weaker lines at the band edges, and since the intensity of these lines de-
creases exponentially with distance from the band center, the increase, of the emis-
sivity becomes linear on a logarithmic plot. This is the behavior to be expected if
the spectrum is dominated by a single band as in the case of carbon dioxide; if there
are several strong bands as in water vapor, the emissivity curve becomes more
complicated.

We shall now turn to the measured emissivity curves for water vapor which are
represented in Fig. 29. Emissivity measurements have been made by Falckenberg
(45), F. A. Brooks (87), and Elsasser (43).

Falckenberg used a tube 2.35 meters long which was set up vertically and had a
chilled black body at the bottom and a black receiver at the top. Carbon dioxide
was removed from the moist air before it entered the apparatus. With this tube,
determinations of the pressure dependence of the absorption were also made which
have already been discussed (Section 8). Brooks’s measurements given in Fig. 28
were made in ordinary laboratory air. The receiving instrument used was of the
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telescope type with a 6-junction thermopile in the focal plane of a concave mirror.
This receiver was built by Hottel and Mangelsdorf (48) for the measurement of
heat radiation of furnace gases and is very carefully shielded from stray radiation.
It is probable that these measurements are more accurate than those of the two
other observers, especially since the author’s own instrument was designed to cover
a very large interval of path lengths and did not give the same accuracy for short
paths. In Fig. 28 we have deducted the carbon dioxide emission as obtained from
the curve of Fig. 26. The remaining water vapor emissivity (in per cent) between
about 0.0001 and 0.0025 cm of precipitable water may be represented by the
formula !
€ = 340~/u — 2.0

and for the emissivity of a slab, assuming a slab of thickness u equivalent to a linear
column of length 1.66 u, we have correspondingly

¢ = 4354/u — 2.0

These formulae, with proper correction for the pressure and temperature depend-
ence of the emission, might prove useful for the investigation of radiative cooling in
the stratosphere.

The author’s measurements which are represented in Fig. 29 were made with a
telescopic instrument in which two small black disks, each with a thermocouple
attached to it, were located in the focal plane of a concave mirror. By means of
a small 45° mirror and an eyepiece at the side of the instrument it was possible to
see the black disks simultaneously with the image of an object in the focal plane.
For the measurement of short optical paths (up to 2 m) the interior of a Dewar
bottle filled with liquid air was used as a black body. For longer path (2m — 50m)
a small chilled black body was placed at the focus of a concave mirror. A search-
light mirror, 80 cm in diameter and aluminized at the front side, was used for this
purpose. The longest paths (50m — 850m) were obtained by combining the receiv-
ing instrument with an astronomical mirror of 55 cm diameter; hereby the mag-
nifying power of the instrument was increased by about a factor seven. In each
case, while one of the black disks was made to cover the image of the black body
the compensating disk was made to cover the image of a cardboard or wooden plate
having the temperature of the air. The measured values were corrected for reflec-
tive loss at the mirrors and the carbon dioxide emission was deducted according
to Fig. 26.

1 Tt does not appear possible to apply to this formula the method explained in Section 7 of determin-

ing the quantity 8 = 2ra/d. This method applies only to the case of a well-defined interval of the
spectrum while here we are dealing with ratios of the whole black body emission.
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The curve designated as “computed” in Fig. 29 is obtained from the data given
in Section 9. Since all calculations for the radiation chart were carried out for radiat-
ing slabs only, the values were again reduced to those for a straight column by assum-
ing that a slab of thickness u is equivalent to a column of length 1.66 ». When the
calculations for the radiation chart were carried out, some adjustments of the curve
of the absorption coefficients, Fig. 19, were made so that the resultant emissivity
curve should fit our measured values. Details have been given in Section 9. At that
time the measurements of F. A. Brooks had not yet been published. It would now
appear that the computed curve is somewhat too high for very low moisture values
and somewhat (about 2-39%, of the black body intensity) too low in the center
part of Fig. 29. This indicates that the intensity of the 6x band as assumed in Fig. 19
is somewhat too small and that the intensity assumed at the top of the rotational
band is too high. Neither result is unexpected according to the discussion in Sec-
tion 9. In the light of the results obtained it may now be evident that by combining
good spectroscopic intensity measurements with the measurements just described,
one can arrive at reliable emissivity values and thus solve the radiative transfer
problem. It could be argued that this is trivial since the total emission of any radia-
tor is the sum of the emissions of all the parts of the spectrum. The total emis-
sivity is, however, not only dependent upon the intensities of the spectral lines in
all parts of the spectrum, but also upon the course of the transmission functions
(Fig. 15) which, on account of the complicated nature of the spectrum, can only be
approximations. The already fairly satisfactory agreement between the actual
emissivities and the computed ones which might be improved by the corrections of
the spectrum referred to can be taken as an indirect check of the correctness of the
transmission curves. One might envisage the measurement of an emissivity curve
of moist air for path lengths ranging over the whole scale of moisture-thicknesses
covered by the radiation chart, and it might then appear as if a spectroscopic analy-
sis could be omitted altogether. But it would be very difficult to make such emis-
sivity measurements for the range of temperatures and pressures prevailing in the
middle and upper atmosphere. On the other hand, we may hope that by means of
a judicious analysis of the pressure and temperature dependence of the spectral
lines we can determine corrections which will give us the emissivities under the con-
ditions of the middle and higher atmosphere with an adequate degree of accuracy.

It may be mentioned here that a number of emissivity measurements of gases at
high temperatures have been carried out for engineering purposes (literature in
(45) and (48) ). The results have a bearing on the problem of heat transfer in fur-
naces and steam boilers. The extrapolation of emissivity curves from high tempera-
tures to room temperature has occasionally been tried. It might be justified for
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carbon dioxide with its comparatively simple spectrum, but reliable measurements
at room temperature are available. In the case of steam emissivities the spectrum
and its variations are much more intricate, and the situation is further complicated
by the fact that, as we have seen in Section 9, the width of the spectral lines in
steam is about twice that in water vapor under atmospheric conditions. A straight-
forward extrapolation of steam emissivity values is therefore liable to lead to re-
sults which are seriously in error.

The emissivity values of Fig. 29 go up to about 8 mm of precipitable water. A
determination of emissivities of thicker columns has been tried by F. A. Brooks
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Fia. 80. Emissivity of water vapor, thick layers.

(87) on the basis of sky radiation measurements carried out with his telescopic
instrument. The procedure followed was that of assuming a trial emissivity curve,
then computing the sky emission and correcting the emissivity curve until the com- -
puted emissivities fitted the observations. This method disregards the small change
of emissivity with temperature (it may be recalled that emissivity is defined as the
ratio of gas emission to black body emission so that the main part of the change of
emission with temperature is due to the change of the black body emission with
T4, while the change of emissivity with temperature reflects only the shift of the
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~ position of the black body curve relative to that of the absorption bands and is
comparatively small). More serious is the fact that the emissivity corresponds to a
mixture of water vapor and carbon dioxide in proportions which have not been
specified. The emissivity curve thus obtained was extrapolated on double logarith-
mic paper so as to pass into the emissivity values for low moistures represented in
Fig. 26. Brooks’s curve is compared in Fig. 30 with an emissivity curve drawn from
the radiation chart. Brooks’s values correspond to a ratio of water vapor to carbon
dioxide which, so far as it is defined, should correspond to their mean proportion
under average conditions near the earth’s surface, while, as we know, the radiation
chart is constructed so that the carbon dioxide radiation represents a constant
amount for all moistures, being about equal to the carbon dioxide radiation emitted
by the whole atmosphere. Hence for smaller moistures the chart values must lie
above Brooks’s values, since in the limit of zero moisture the chart gives about 18%
emissivity corresponding to the carbon dioxide band alone while Brooks’s curve
gives zero emissivity. This behavior is verified from Fig. 30. In the region from,
say, 5 mm to 10 cm of precipitable water which corresponds to the amounts of water
vapor overhead found in the atmosphere under average conditions the two curves
agree fairly well and the.deviations are probably within the errors induced by the
reduction of the sky radiation measurements. Hence, Fig. 30 may be taken as a
test of the new radiation chart yielding a fairly good agreement between sky radia-
tion computed from the chart and sky radiation observed.

13. Nocturnal Radiation Measurements

Sky radiation measurements are of practical interest in connection with the
problems of nocturnal frosts and nocturnal fogs produced by the radiative cooling
of the ground. Besides, if carried out in conjunction with upper air soundings, they
provide valuable information about the dependence of the radiative heat flux on
the distribution of the temperature and moisture aloft and thus allow us to draw
indirect conclusions about the effects of this flux in the free atmosphere. Such com-
bined measurements were carried out in the early work of Kngstr'dm (97) and in
the more recent observations of the United States Weather Bureau in Alaska and
North Dakota (128). While the amount of heat lost by the ground during any
short period of time is comparatively small, radiative cooling of the ground is never-
theless a very powerful agent in the heat balance of the atmosphere, since it acts
continuously, night and day. Reports of a rather sudden change of the amount of
outgoing radiation at certain times of the day (107) are probably induced by wind
influence upon the instrument or by other spurious effects. Ina record of sky radia-
tion made at Pasadena (unpublished) the guthor found that whenever the air was
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stable enough to prevent day-time convection, the radiation from the sky at suffi-
cient distance from the sun was very little different from that at night.

With clear skies the incoming radiation is practically always between 509, and
85%, of the black body flux corresponding to the temperature of the air near the
ground and is most commonly between 65% and 759, of this flux. It is seen from
this fact that sky radiation observations in the presence of upper air soundings
furnish a highly critical test of the calculations of radiative heat transfer: a relative
error in emissivities referring to black body emission will produce a relative error '
in the rate of nocturnal cooling which is from three to four times larger. The figures
mentioned refer to sky radiation with perfectly clear sky; any cloud present greatly'
reduces the heat loss of the ground and with a solid overcast the outgoing flux is
only of the order of 5~10% of the black body flux.

On account of the great variety of moisture and temperature distributions found
in the atmosphere the incoming sky radiation does not follow any very simple law.
Since upper air soundings are not always available, observers early tried to correlate
the incoming radiation with elements of observations at the ground, such as temper-
ature, moisture, etc. These efforts have led to a number of empirical formulae for
sky radiation, all of which agree only statistically with the observations but provide
a valuable guide for the estimate of the sky radiation under glven meteorological
conditions. The two principal formulae of this type are due to Angstrom (97M), (100),
and to Brunt (66), (1); we shall also briefly discuss a formula of Robitzsch (120).
We express the incoming sky radiation R by means of the ratio R/F, where Fy,= aTt
is the black body flux corresponding to the temperature of the air near the ground.
The empirical formulae give the sky radiation as function of the water vapor pres-
sure ¢ in the air near the ground; we express ¢ in millibars.

In the following discussion we make frequent reference to a paper of Raman
(116) from which many of the numerical values indicated below are drawn. The
formula of &ngstriim reads ‘

R/Fy=a—b-107"

&ngstrb’m has several times changed the values of the constants in order to achieve
a better fit with the increasing number of observations; the latest values seem to

be (8):
a = 0.806 b = 0.236 v = 0.052

The figures represent quite well the original data of z&ngstrb'm and of Asklsf (101);
in addition Raman has calculated coefficients from a number of other series of

observations:
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a b ¥
Kimball (109) on Mt. Weather (540m) ......... 0.80 0.325 0.070
Eckel (106) on Kanzelhohe (1500m) Austria ... .. 0.71 0.24 0.074
Ramanathan and Desai (117) Poona (564m) India 0.78 0.27 0.040
Raman (116) Poona ...............c..ooiilt. 0.79 . 0.278 0.051

Usually the individual observations show a fairly wide scatter about these curves.
Malurkar (112) has tried to modify the f&ngstrtim formula by introducing the
function E7; in place of the exponential. Since however Ei; (z) is numerically very

close to e 3%/%

, no essential advantage results.
Brunt (66) has proposed another formula for sky radiation and found that in a
number of series of observations the individual data scattered much less about his

formula than about that of ./ingstrtim. Brunt’s formula is

R/Fy=a+b+/e

For the very extensive series of observations by Dines (104) he finds a = 0.256 and
b = 0.065. Brunt (1) has calculated coefficients a and b from other series of ob-
servations and the list has been amplified by Raman. Below, we have also indicated
. the coefficient of correlation r between the observed values and those obtained from
the formula. All these values are the result of comparatively lengthy series of
observations. '

a b r
Dines (104), Benson, England ..................... 53 .065 97
Asklsf (101), Upsala, Sweden ...................... 48 .082 .83
j&ngstrﬁm (97), Bassour (1160m), Algeria ............ A8 058 78
Angstrbm (97), Mt. Whitney (4420m), Calif. ........ .50 .032 .30
Boutaric (102), Montpellier (2860m), France ......... 60 042 .
Robitzsch (120), Lindenberg, Germany ............. 34 110 1.0
Kimball (109), Washington, D.C. .................. 44 .061 .29
Kimball, Mt. Weather (540m), Virginia ............. 52 .066 .84
Kimball, various placesin U. 8. .................... .53 .062 .88
Eckel (106), Kanzelhohe (1500m), Austria ........... 47 .063 .89
Ramanathan and Desai (117), Poona (560m) India .... .55 .038 .63
Raman (116), Poona ........ccovvivinveianniinan, .62 .029 .68

Raman has pointed out that the measurements of Robitzsch might be influenced
by systematic errors and the high coefficient of correlation would therefore not be
significant.
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A third empirical formula, finally, has been suggested by Robitzsch (120); it
reads :

R/F, = (0.185p +6.0¢)/T

where p is the air pressure in millibars. In Fig. 81, taken from Robitzsch, the water
vapor pressure is plotted against the value of the numerator on the right-hand side
of this formula. The Lindenberg observations and those of Angstrom at high ele-
vations (97) were used; the latter were reduced to standard pressure p; = 1000 by
adding the term 0.135 (po — p) to the numerator. Although the Lindenberg ob-
servations have been criticized by Raman (116) the fit with Angstrom s observa-
tions deserves attention and invites further critical investigations of this formula.
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Fig. 81.

Attempts have been made by Angstrom and others (87) (118) to give a theoreti-
cal justification of the empirical relationship expressed in Angstrom s formula. One
may take as a starting point the fact that the spectrum of the atmosphere consists
of a highly opaque part and a semi-transparent part in the neighborhood of 10.
The opaque portion may be regarded as a black radlator with a temperature nearly
equal to that of the air near the ground. If we write Angstrom s formula

R = Fs(a—b) + F,b(1 — 107™)

the first parenthesis would correspond to the contribution of the opaque part. The
second term might be interpreted as the emission of an isothermal layer with a con-
stant absorption coefficient (provided the spectrum is of a continuous and not of a
line character), it being assumed that the total moisture overhead is proportional
to the water vapor density near the ground. In addition, the formula interpreted
in this way implies that the opaque and the semi-transparent parts of the spectrum
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are distributed so that their relative proportion does not depend upon the tempera-
ture. (In reality the emissivity for a given moisture increases slowly with tempera-
ture as may be seen from Table 11.)

We know that the spectrum of water vapor is not a continuous but a line spec-
trum and does not obey an exponential but a square-root law of absorption and
emission. Strong (33) has given a derivation of Brunt’s formula based essentially
upon the preceding arguments but using the square-root law in place of an ex-
ponential. Indeed if we replace (1 — 10-") in the above expression for the sky
radiation by const- 4/¢ we obtain Brunt’s formula. Raman (116) has pointed out
that the two formulae are not so different as it might appear at first sight. Thus
the expressions 0.28 (1 — 107995 and 0.064/ ¢ do not differ from each other by
more than 109, for an interval of ¢ ranging from ¢ = 2 to ¢ = 40. On the other side
we have Brunt’s finding (1), that a considerably better correlation is found in some
series of observations with the square-root than with the exponential formula.

The actual spectral structure of the emission of the sky is quite complex, and
one would want to compare the formulae for sky radiation with the actual emissivity
curve of an isothermal slab. The emissivity for the range of moistures with which
we are dealing here is shown in Fig. 80, and the relation seems to be nearly linear on
a logarithmic plot. Hence, assuming again that the total moisture overhead is
proportional to the moisture near the ground, we are led to a formula for sky
radiation

R/F,=a-bloge

This again is not so different from Brunt’s formula as might be expected. The
functions 0.21 + 0.22-log e and 0.06+/ ¢ do not differ by more than 109 in the in-
terval ¢ = 8 to e = 40. If the emissivity curve of Fig. 80 is plotted against the
square root of the moisture, the curve obtained will have considerably more curva-
ture than that on the logarithmic diagram. Under these circumstances, Brunt’s
formula can hardly be considered as much more than an empirical relationship,
and if the premises are accepted upon which the theoretical derivation outlined
above was based, a logarithmic formula would appear as a rather logical approxi-
mation.

In view of the empirical character of these relations a formula such as Robitzsch’s
might also deserve attention. The other two formulae do not take into account the
" height of the observer, and it might be assumed that with equal temperature and
moisture at the ground the total amount of moisture overhead will be less at 2
higher elevation than at sea-level. The introduction of a pressure term seems there-
fore not altogether unjustified. The appearance of the temperature in the denomina-
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tor seems to correspond to the fact that the emissivity decreases slowly with in-
creasing temperature (as may be verified from Tables 8 and 11).

The formulae for sky radiation which have been proposed do not take into ac-
count the existence of ground inversions. One might be inclined to think that a
better representation of empirical data by means of such formulae could be achieved
if the case of inversion is treated separately. The decrease of moisture and tempera-
ture with height in an average atmosphere is fairly regular and uniform, and it is
therefore understandable that the average sky radiation may be approximated by
a simple function of temperature and moisture near the ground. One would not,
however, expect such a formula to apply without further corrections to the case
where a strong inversion is present in the lowest layers of the atmosphere. So far
this question has apparently not been investigated.

Tf clouds are present, the amount of incoming radiation is greatly increased and
the cooling of the ground is correspondingly reduced. Systematic observations have
been made by Asklsf (101) and f&ngstrﬁm (100), and the following figures refer to
a fully overcast sky. If R is again the incoming sky radiation and if Ry is that in-
coming radiation which is computed from zo&ngstri:'om’s formula for a clear sky, we
write for the net loss of radiation:

L=F,—R=»xF— Ry

where \ is a numerical factor which is found to depend principally on the height of
the cloud deck. The following values of \ are reported:

cloud height ................... 1.5 8 7 km
A g 0.14 0.25 0.80

cloud height ................... 2 5 8
D S 0.17 0.38 0.45

For low clouds the agreement between the observed and caleulated values is quite
satisfactory; in order to explain the discrepancy for high clouds Philipps suggests
that the high overcast observed by Asklof during the night was not in general
thick enough to be entirely black and might have had occasional breaks. Accord-
ing to Dines’s observations (104) the average heat loss of the ground for overcast
skies is one sixth of that for clear skies.

We turn now to the dependence of the incoming sky radiation upon the angle
§ of zenith distance. Spectroscopic measurements of the angular dependence for
various wave lengths have been made by Strong (83) and observations with black
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body instruments are due to Dines (104), Stissenberger (121), and Ramdas, Sreeni-
vasiah and Raman (119). On increasing the distance from the zenith it is found
that the incoming radiation increases very slowly and at 80° zenith distance it is
still nearly the same as in the vertical. Only very near to the horizon does the in-
coming radiation increase rapidly towards the full black body value. Asan example
we give the yearly mean values of Dines in calories per cm? per day:

7.5° 22.5° 37.5° 52.5° 67.5° 82.5°
490 493 508 522 553 674

The values of Siissenberger show a very similar course except that above 80° they
give much less incoming radiation. This might be attributed to the relatively large
opening angle of Dines’s instrument which could bring obstacles into the cone of
sight near the horizon, whereas Siissenberger used a telescopic instrument with
nearly parallel beam. Strong found (83) that the angular dependence of Dines’s
values can be rather accurately represented by a formula of the type

Iy =a-+bv/sect

where a and b are empirical constants. We found the same to be true for the
measurements of Siissenberger up to 80°, while the values given for 85° were lower
than would follow from such a formula. Strong also discovered that if the winter
and summer values of Dines are plotted separately two curves result which have
" nearly the same b but different values of a.

Following Linke (100) we may determine the two coefficients in such a formula
as the preceding one from two measurements, one at 0° and one at 60°. We may
then compute the radiation falling upon a horizontal plate from the whole sky by
using (2.4). If the simple calculations are carried out we obtain the result

R = 2.53150 + 0.61 Io

Linke himself has tried to express the heat loss of the black instrument under the
angle by an expression of the form

lo = lo cos’d

‘where Iy is the loss in vertical direction. The exponent 7 is found from two measure-
ments, one at 0° and one at 60°:

r = log (Is/10)/log cos 60° = 3.32 log (ls0/l0)
and the net loss of a horizontal black plate follows as

L= QTlo/(Q -+ ')')
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Stissenberger indicates that the approximate curves thus obtained give a very good
fit except at angles over 80° where the values computed from the formula are too
large (i.e., the computed incoming radiation is too small). In the average over a
large number of observations the total net loss L computed from the above formula
was only about 8% higher than that obtained by graphical integration of the curves
of angular distribution.

We see from (2.4) that in the integration over the hemisphere the incident in-
tensity is multiplied by sin cosf, a function which has a maximum at 45° and van-
ishes at 0° and 90°. Hence the part of the sky near the horizon contributes little to
the total sky radiation and the assumption that the approximative formulae given
above should come close to the true radiation of the whole sky is theoretically
justified. '

14. Notes on Radiative Cooling of the Free Atmosphere

The most significant meteorological applications of the methods developed on
these pages are those dealing with the cooling of the free air. Here we enter the
field of meteorological thermodynamies; unfortunately our knowledge of the cooling
phenomena, is still in a rather rudimentary state. We shall therefore confine our-
selves to some very brief and general remarks. The relation of radiative cooling to
the dynamics of the atmosphere is readily understood. The circulation of the at-
mosphere is due to two main causes, the difference in heat received from the sun in
different geographical latitudes and the difference in heat gained or lost at different
heights of the atmosphere. While the former cause is the primary agent that de-
termines the atmospheric circulation, the radiative heat balance of the free air is a
secondary controlling factor which does not yield much to the former in profound
influence upon the dynamics of the air. Since, as we shall see, the atmosphere is
continuously losing heat by infrared radiation into space (and the quantities of
heat lost in this way are large) the mechanical motions of the air, due mainly to
horizontal temperature gradients at the surface, must have vertical components of
such magnitude that they can supply, in the average, the equivalent of the radia-
tive loss at any level aloft. A variety of meteorological aspects of radiative transfer
can only be lightly touched upon in the present paper; for a particularly complete
treatment of infrared radiation in its various meteorological implications we refer
to chapters 5-7 in the well-known treatise of Brunt (1). This book has played an
outstanding role in the development of our subject and it has drawn the attention
of many meteorologists to phenomena of infrared radiation. 4

Tt was found concordantly by Méller (80) who used the Miigge and Moller
radiation chart (83), and by the calculations (70) carried out with the first edition
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of our radiation chart, that the net effect of infrared radiation upon the free atmos-
phere is universally a cooling. This result is not essentially modified if the absorp-
tion of solar radiation by the free atmosphere is taken into account since the
heating produced by the latter is always much smaller than the cooling due to
the infrared emission of the atmosphere itself. The amount of cooling found from
the first edition of the radiation chart varies in general between about 1° C and 8°C
per day, depending mainly on the humidity and increasing regularly with the latter.
The numerical values need revision and it is seen from a comparison of the first
and second editions of the chart that the figures obtained were too large. Computa-
tions of the radiative heat balance by Moller (80) are shown in Figs. 32 and 33,
Fig. 82 refers to mean conditions with a clear sky over Lindenberg in June; Fig. 33
to conditions of mean cloudiness for the same time and location. The cloud distribu-
tion assumed was the same as used by Baur and Philipps (64). The figures are re-
produced here not so much on account of the numerical values for the cooling con-
tained in them, but in order to illustrate the typical radiative heat balance prevailing
in the free atmosphere in middle latitudes. The relative constancy of the radiative
cooling over the larger part of the troposphere indicated in Fig. 82 is rather surpris-
ing. In our own calculations it was found on the contrary that the radiative cooling
decreases rather rapidly with moisture and therefore with height. This work was
done with the first edition of the radiation chart and new calculations are now re-
quired to bring about a decision. It seems fairly probable, however, that even with
the new values radiative cooling will be found to decrease with height. This effect
is of great importance in that it leads to a stabilization of the air in vertical direc-
tion since it tends to decrease the vertical temperature gradient. The heating of the
atmosphere by absorption of solar radiation was also computed by Moller by means
of formula (10.2) and is shown in Fig. 32. Similar, more extensive computations on
the effect of sunlight were carried out by Tanck (98); he found that the heating
effect due to the absorption of sunlight varies between about 0.3° and 0.6° C per
day according to conditions. The pressure correction of the absorption was neg-
lected in this work, but this should not modify the results by more than 10-15%.
It is seen from Fig. 33 that the picture of the clear sky is rather thoroughly
altered if clouds are taken into account. It was found in our calculations that clouds
_ cool appreciably because of their own emission, and this is also clearly recognized
from the emission curve of Fig. 83. The solar absorption is not much changed as
compared to Fig. 32, but the heat of condensation which now appears is so large
_ that a balance of an entirely different type results, giving a rapid increase of cooling
with height and thus a pronounced destabilization of the air in the middle tropo-
sphere. While these figures are probably far from definitive, they may give an idea
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of the phenomena and problems related to heat transfer in the free atmosphere.
A number of meteorological papers have been devoted to the problem of radia-
tive cooling in the free air and its dynamical implications (see Part 4 of the bibliog-
raphy), but in view of our rapidly increasing knowledge of the infrared emissivities
of water vapor and carbon dioxide it is perhaps premature to discuss this subject
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at present in more detail. We shall say a few words about ground inversions. The
primary cause of most inversions is the radiative cooling of the ground itself. The
main problem of the inversions lies in the understanding of the mechanism by which
the lower strata of the atmosphere in turn transfer heat to the ground. This takes
place partly by radiation and partly by turbulent transfer. The mechanism has
been investigated by Brunt (65) and by Philipps (87). Most of the radiative cool-
ing of the free air is due to a loss of radiation upwards to space, but in this respect the
lowest layers do not behave differently from the air aloft, and no inversion will be
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created; in addition there is a radiative flux from the lowest layers of air downwards
to the ground if the latter is cold enough. It was clearly shown by Ashburn (63) and
verified by the author (70) that this radiative transfer is relatively small and is
quite negligible compared to the turbulent transfer at heights above about 50 m.
This rule may suffer exception for the very pronounced inversions in polar regions
over a snow surface where the snow becomes exceedingly cold and where there
might be an appreciable radiative transfer from the air in the lowest layers to the
ground, as has been found by Wexler (94).

In the lower atmosphere the outgoing flux is carried almost exclusively by water
vapor radiation, and the contribution of carbon dioxide radiation to the cooling
is small. This is different in the stratosphere. The stratosphere being almost
isothermal, an emissivity curve of the type of Fig. 27 must apply to the carbon
dioxide radiation; the pressure and temperature are of course different from those to
which Fig. 27 refers. In the stratosphere the contributions of water vapor and
carbon dioxide to the cooling appear to be of the same order of magnitude. The
cooling, which seems to have a minimum in the upper troposphere, increases again
as we go upwards in the stratosphere as Moller has found and as may be inferred
from the carbon dioxide emissivity, Fig. 27. In order to get a rough estimate of the
total cooling of the stratosphere, let us assume that the outgoing flux is, say, 209,
of the black body flux at —55° C. This gives us 53 calories per em? per day and if
we distributed this evenly over a layer of the thickness of the stratosphere, say
200 millibars, we would by (5.6) obtain a mean cooling of 1.1° per day. In reality
the cooling will be much less in the lower stratosphere and will increase as we go
upwards. It has been pointed out by Professor Strong that if the top layers of the
stratosphere are very warm, as is probable, a downward flux of radiation in the
carbon dioxide band must obtain. We can expect this effect to reduce considerably
the radiative cooling of the stratosphere in the layers directly underneath the warm
top layer.

Tt is an open question whether the heat lost by infrared radiation of the strato-
.sphere may in part be replenished from the warm layers on top by turbulent mo-
tions of the air. (Notice that in a medium which has a stable stratification, the flow
. of heat produced by turbulence is always directed downwards.) It seems that the
heat lost by the thermal emission of the stratosphere is in the main supplied through
the absorption of ultraviolet and visible sunlight by ozone. The ozone problem is too
complex to be even touched upon here; for the convenience of the reader we have
included in the bibliography some reports on the subject which contain ample lit-
erature references. The cooling by infrared radiation represents, so to speak, the
other face of the ozone problem in so far as it accounts for the disposal by the stra-
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tosphere of the energy taken out of the solar spectrum in the ozone bands. This
physical condition is frequently referred to as radiative equilibrium; it must be re-
membered, however, that the equilibrium by no means applies to infrared radiation
alone, but to a condition in which the received solar energy is reémitted by the stra-
tosphere in form of infrared radiation. The equilibrium need not be local, since
there is evidence of strong horizontal motion all through the stratosphere.

We might finally mention another problem of meteorological importance, the
heat balance of the earth as a whole. In the average, the solar radiation absorbed
by the earth equals the infrared flux leaving the outer boundary of the atmosphere.
The amount of solar radiation absorbed depends essentially only on the albedo of
the clouds, while the outgoing infrared radiation is a rather complex function of the
distribution of moisture, temperature and cloudiness in the atmosphere and is com-
puted by the same methods as radiative cooling, etc. We may refer to the extensive
investigations of Simpson (91), Abbot (59), and Baur and Philipps (64) without
entering into a discussion of their results.



APPENDIX: A MECHANICAL COMPUTING DEVICE

In order to carry out the extensive numerical calculations necessary for the con-
struction of the radiation chart, a mechanical device was developed which might
_be useful to others and which is therefore described below. The device performs the
following two operations: First, it permits the computation of a function of a func-
tion, f [g(z)] say, if f and g are given graphically. Secondly, it permits the calcu-
lation of the integral over the product of two functions J = S f(z) ¢(z) dz, say.
It may be shown that the second problem can be reduced to the first combined with

a simple integration. Indeed, if we put u = J ¢ dz, we have
0

J=JSfdu=Sfla()]du

If u is graphically given as function of 2, we immediately solve for # () by inter-
changing the axes. k

The diagram, Fig. 34, shows the design of the machine. It consists of four
movable carriages numbered I to IV. The top of each of the carriages I, II, and
III consists of a small drawing board. Carriages T and III are attached to two
synchronous worm gears driven by an electric motor. Carriages IL and IV aremoved
by two operators sitting in front of I and II respectively, each holding a handle
attached to the arms A and B respectively. The operators move carriages II and
IV so that a pointer provided at the end of the arms A and B follows a curve drawn
on the boards T and II, respectively. We see from the figure that each of the co-
ordinates z, y, z indicated appears twice on the three drawing boards and with the
signs indicated in each case by the arrows. It is now readily seen that if the curve
on board I has the equation y = g(z) and the curve on board II has the equation
z = f(y), the point C on carriage IV describes the curve z = f [g(z)] relative to
the moving board III. If a pencil is attached to C, it will draw this curve on the
board III. In this way the first of our two operations is carried out. For the sec-
ond operation the pencil is replaced by a planimeter attached to C. The planim-
cter is read at the start and at the end, after carriage TIT has been brought back
to its initial position; the difference of the readings gives the value of the integral
desired.

We shall indicate a few details of the construction. The drawing boards I and
II are about 12 X 11 inches; board III is slightly larger. The carriages I and II
are equal in construction and consist of a fairly heavy steel frame and four wheels.
The two wheels on one side of each carriage have beveled disks of about 1% inches
diameter which roll in a V-shaped groove cut in a steel rail. The other two wheels
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are simply flat rollers. For the bearings of the wheels and for the rollers the cheapest
type of commercial ball bearings of 1 inch diameter are used. These bearings have
a very considerable play, but it is found that after proper adjustment of all parts
the random transverse motion of the carriages caused by this play becomes small
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enough to be practically negligible. The drawing boards themselves are made of
plywood. Carriage IV merely transfers a motion from II to III and consists of a
heavy metal frame rolling on two rails elevated above the rest of the machine so
as to permit the passage of carriages II and III underneath. Carriage III consists
of an ordinary small drawing board reinforced at the sides by L-shaped strips of
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brass. In motion it merely slides on the base plate of the machine. A straight
motion of this carriage is secured by pairs of rollers (ball bearings) with vertical
axes on each side of the board, one pair being pressed to the board with springs.
The planimeter used is of the linear type and consists of a triangular frame with
an arm pivoting around the point of the triangle. The planimeter wheel is indicated
in the figure directly underneath the letter P. The frame of the planimeter rolls
on two wheels in the groove of a rail outside the carriage III; the point of the tri-
angle is supported by a roller. Undoubtedly a polar planimeter of sufficiently large
size could also be used, although this was not tried since the linear planimeter was
the only large planimeter available.

The whole machine is mounted on a large drawing board. The speed of the
motor driving the worm gears is regulated by means of a foot rheostat such as those
which are used in sewing machines. '

It was also necessary to introduce into the calculations functions f (z -} a), ete.,
for various values of the constant a. This can be achieved by developing the draw-
ing boards on I and II so that they can be shifted with respect to the frame of the
carriages. They are kept in place by friction, and the displacement is measured
by means of a pointer attached to the frame moving over a scale attached to the
board.

For our particular work the transmission functions 7(lu) had to be determined
as function of the frequency ». The coefficient [ is given on a logarithmic scale in
Fig. 19 and 7 is given in Fig. 15. Since the scale of [ is logarithmie, various values
of u correspond to additive constants which are introduced in the manner just ex-
plained. The function 7(») is drawn on a sheet of paper on carriage III by a pencil
inserted in C. The curves thus obtained are put on carriage II and the integral of
the Planck function or of its temperature derivative (Table 1, Section 1) is fastened
to carriage I. The planimeter is inserted at C and the desired integrals of the form
(4.8) or (4.4) are obtained. After some training, an integration could be carried
out in about four minutes. With some care in handling the machine an accuracy
of about 19, or better was achieved.
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